165 research outputs found

    Domain Adaptive Faster R-CNN for Object Detection in the Wild

    Full text link
    Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.Comment: Accepted to CVPR 201

    Dual Auction Mechanism for Transaction Forwarding and Validation in Complex Wireless Blockchain Network

    Full text link
    In traditional blockchain networks, transaction fees are only allocated to full nodes (i.e., miners) regardless of the contribution of forwarding behaviors of light nodes. However, the lack of forwarding incentive reduces the willingness of light nodes to relay transactions, especially in the energy-constrained Mobile Ad Hoc Network (MANET). This paper proposes a novel dual auction mechanism to allocate transaction fees for forwarding and validation behaviors in the wireless blockchain network. The dual auction mechanism consists of two auction models: the forwarding auction and the validation auction. In the forwarding auction, forwarding nodes use Generalized First Price (GFP) auction to choose transactions to forward. Besides, forwarding nodes adjust the forwarding probability through a no-regret algorithm to improve efficiency. In the validation auction, full nodes select transactions using Vickrey-Clarke-Grove (VCG) mechanism to construct the block. We prove that the designed dual auction mechanism is Incentive Compatibility (IC), Individual Rationality (IR), and Computational Efficiency (CE). Especially, we derive the upper bound of the social welfare difference between the social optimal auction and our proposed one. Extensive simulation results demonstrate that the proposed dual auction mechanism decreases energy and spectrum resource consumption and effectively improves social welfare without sacrificing the throughput and the security of the wireless blockchain network

    Integrating Overlapping Structures and Background Information of Words Significantly Improves Biological Sequence Comparison

    Get PDF
    Word-based models have achieved promising results in sequence comparison. However, as the important statistical properties of words in biological sequence, how to use the overlapping structures and background information of the words to improve sequence comparison is still a problem. This paper proposed a new statistical method that integrates the overlapping structures and the background information of the words in biological sequences. To assess the effectiveness of this integration for sequence comparison, two sets of evaluation experiments were taken to test the proposed model. The first one, performed via receiver operating curve analysis, is the application of proposed method in discrimination between functionally related regulatory sequences and unrelated sequences, intron and exon. The second experiment is to evaluate the performance of the proposed method with f-measure for clustering Hepatitis E virus genotypes. It was demonstrated that the proposed method integrating the overlapping structures and the background information of words significantly improves biological sequence comparison and outperforms the existing models

    Compositional Mining of Multiple Object API Protocols through State Abstraction

    Get PDF
    API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments

    Protective Effect of Anthocyanin on Neurovascular Unit in Cerebral Ischemia/Reperfusion Injury in Rats

    Get PDF
    Treating cerebral ischemia continues to be a clinical challenge. Studies have shown that the neurovascular unit (NVU), as the central structural basis, plays a key role in cerebral ischemia. Here, we report that anthocyanin, a safe and natural antioxidant, could inhibit apoptosis and inflammation to protect NVU in rats impaired by middle cerebral artery occlusion/reperfusion (MCAO/R). Administration of anthocyanin significantly reduced infarct volume and neurological scores in MCAO/R rats. Anthocyanin could also markedly ameliorate cerebral edema and reduce the concentration of Evans blue (EB) by inhibiting MMP-9. Moreover, anthocyanin alleviated apoptotic injury resulting from MCAO/R through the regulation of Bcl-2 family proteins. The levels of inflammation-related molecules including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), which were over-expressed with MCAO/R, were decreased by anthocyanin. In addition, Nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome pathway might be involved in the anti-inflammatory effect of anthocyanin. In conclusion, anthocyanin could protect the NVU through multiple pathways, and play a protective role in cerebral ischemia/reperfusion injury
    • …
    corecore