32,085 research outputs found
Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102
In this paper, we propose a new scenario in which a rapidly-rotating
strongly-magnetized pulsar without any surrounding supernova ejecta produces
fast radio bursts (FRBs) repeatedly via some mechanisms, and meanwhile, an
ultra-relativistic electron/positron pair wind from the pulsar sweeps up its
ambient dense interstellar medium, giving rise to a non-relativistic pulsar
wind nebula (PWN). We show that the synchrotron radio emission from such a PWN
is bright enough to account for the recently-discovered persistent radio source
associated with the repeating FRB 121102 in reasonable ranges of the model
parameters. In addition, our PWN scenario is consistent with the non-evolution
of the dispersion measure inferred from all the repeating bursts observed in
four years.Comment: 6 pages, 1 figure, ApJ Letters in pres
Measuring dark energy with the correlation of gamma-ray bursts using model-independent methods
In this paper, we use two model-independent methods to standardize long
gamma-ray bursts (GRBs) using the correlation, where
is the isotropic-equivalent gamma-ray energy and is
the spectral peak energy. We update 42 long GRBs and try to make constraint on
cosmological parameters. The full sample contains 151 long GRBs with redshifts
from 0.0331 to 8.2. The first method is the simultaneous fitting method. The
extrinsic scatter is taken into account and assigned to the
parameter . The best-fitting values are ,
, and in the flat
CDM model. The constraint on is at the
1 confidence level. If reduced method is used, the best-fit
results are , and . The
second method is using type Ia supernovae (SNe Ia) to calibrate the correlation. We calibrate 90 high-redshift GRBs in the redshift
range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are
for flat CDM, and
and for non-flat
CDM. For the combination of GRB and SNe Ia sample, we obtain
and for the flat CDM, and
for the non-flat CDM, the results are ,
and . These results from
calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined
data can improve cosmological constraints significantly, comparing to SNe Ia
alone. Our results show that the correlation is
promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains
calibrated distance moduli of GRB
Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media
Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball
interacting with an external medium, we calculate the hydrodynamics of the
fireball with energy injection from a strongly magnetic millisecond pulsar
through magnetic dipole radiation, and obtain the light curve of the optical
afterglow from the fireball by synchrotron radiation. Results are given both
for a homogeneous external medium and for a wind ejected by GRB progenitor. Our
calculations are also available in both ultra-relativistic and non-relativistic
phases. Furthermore, the observed R-band light curve of GRB{000301C} can be
well fitted in our model, which might provide a probe of the properties of GRB
progenitors.Comment: revised version for publication in Chin. Phys. Let
A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China
Cosmic rays interact with the Earth's atmosphere to produce C, which
can be absorbed by trees. Therefore, rapid increases of C in tree rings
can be used to probe previous cosmic-ray events. By this method, three C
rapidly increasing events have been found. Plausible causes of these events
include large solar proton events, supernovae or short gamma-ray bursts.
However, due to the lack of measurements of C by year, the occurrence
frequency of such C rapidly increasing events is poorly known. In
addition, rapid increases may be hidden in the IntCal13 data with five-year
resolution. Here we report the result of C measurements using an ancient
buried tree during the period between BC 3388 and 3358. We find a rapid
increase of about 9\textperthousand~ in the C content from BC 3372 to BC
3371. We suggest that this event could originate from a large solar proton
event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
An unexpectedly low-redshift excess of Swift gamma-ray burst rate
Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and
can be used to explore the properties of high-redshift universe. It is believed
that the long GRBs are associated with the deaths of massive stars. So it is
possible to use GRBs to investigate the star formation rate (SFR). In this
paper, we use Lynden-Bell's method to study the luminosity function and
rate of \emph{Swift} long GRBs without any assumptions. We find that the
luminosity of GRBs evolves with redshift as with
. After correcting the redshift evolution through
, the luminosity function can be expressed as
for dim GRBs and for bright GRBs, with the break point
. We also find that the formation
rate of GRBs is almost constant at for the first time, which is
remarkably different from the SFR. At , the formation rate of GRB is
consistent with the SFR. Our results are dramatically different from previous
studies. Some possible reasons for this low-redshift excess are discussed. We
also test the robustness of our results with Monte Carlo simulations. The
distributions of mock data (i.e., luminosity-redshift distribution, luminosity
function, cumulative distribution and distribution) are in good
agreement with the observations. Besides, we also find that there are
remarkable difference between the mock data and the observations if long GRB
are unbiased tracers of SFR at .Comment: 33 pages, 10 figures, 1 table, accepted by ApJ
Beaming Effects in Gamma-Ray Bursts
Based on a refined generic dynamical model, we investigate afterglows from
jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase,
the light curve break could marginally be seen. However, an obvious break does
exist at the transition from the relativistic phase to the non-relativistic
phase, which typically occurs at time 10 to 30 days. It is very interesting
that the break is affected by many parameters, especially by the electron
energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication
of orphan afterglow surveys on GRB beaming is investigated. The possible
existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at
the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July
11-17, 2002). A slightly revised version will appear in the proceeding
- …