32,085 research outputs found

    Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Full text link
    In this paper, we propose a new scenario in which a rapidly-rotating strongly-magnetized pulsar without any surrounding supernova ejecta produces fast radio bursts (FRBs) repeatedly via some mechanisms, and meanwhile, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently-discovered persistent radio source associated with the repeating FRB 121102 in reasonable ranges of the model parameters. In addition, our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all the repeating bursts observed in four years.Comment: 6 pages, 1 figure, ApJ Letters in pres

    Measuring dark energy with the EisoEpE_{\rm iso}-E_{\rm p} correlation of gamma-ray bursts using model-independent methods

    Full text link
    In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the EisoEpE_{\rm iso}-E_{\rm p} correlation, where EisoE_{\rm iso} is the isotropic-equivalent gamma-ray energy and EpE_{\rm p} is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter σext\sigma_{\rm ext} is taken into account and assigned to the parameter EisoE_{\rm iso}. The best-fitting values are a=49.15±0.26a=49.15\pm0.26, b=1.42±0.11b=1.42\pm0.11, σext=0.34±0.03\sigma_{\rm ext}=0.34\pm0.03 and Ωm=0.79\Omega_m=0.79 in the flat Λ\LambdaCDM model. The constraint on Ωm\Omega_m is 0.55<Ωm<10.55<\Omega_m<1 at the 1σ\sigma confidence level. If reduced χ2\chi^2 method is used, the best-fit results are a=48.96±0.18a=48.96\pm0.18, b=1.52±0.08b=1.52\pm0.08 and Ωm=0.50±0.12\Omega_m=0.50\pm0.12. The second method is using type Ia supernovae (SNe Ia) to calibrate the EisoEpE_{\rm iso}-E_{\rm p} correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm=0.230.04+0.06\Omega_m=0.23^{+0.06}_{-0.04} for flat Λ\LambdaCDM, and Ωm=0.18±0.11\Omega_m=0.18\pm0.11 and ΩΛ=0.46±0.51\Omega_{\Lambda}=0.46\pm0.51 for non-flat Λ\LambdaCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm=0.271±0.019\Omega_m=0.271\pm0.019 and h=0.701±0.002h=0.701\pm0.002 for the flat Λ\LambdaCDM, and for the non-flat Λ\LambdaCDM, the results are Ωm=0.225±0.044\Omega_m=0.225\pm0.044, ΩΛ=0.640±0.082\Omega_{\Lambda}=0.640\pm0.082 and h=0.698±0.004h=0.698\pm0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the EisoEpE_{\rm iso}-E_{\rm p} correlation is promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains calibrated distance moduli of GRB

    Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media

    Get PDF
    Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball interacting with an external medium, we calculate the hydrodynamics of the fireball with energy injection from a strongly magnetic millisecond pulsar through magnetic dipole radiation, and obtain the light curve of the optical afterglow from the fireball by synchrotron radiation. Results are given both for a homogeneous external medium and for a wind ejected by GRB progenitor. Our calculations are also available in both ultra-relativistic and non-relativistic phases. Furthermore, the observed R-band light curve of GRB{000301C} can be well fitted in our model, which might provide a probe of the properties of GRB progenitors.Comment: revised version for publication in Chin. Phys. Let

    A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China

    Get PDF
    Cosmic rays interact with the Earth's atmosphere to produce 14^{14}C, which can be absorbed by trees. Therefore, rapid increases of 14^{14}C in tree rings can be used to probe previous cosmic-ray events. By this method, three 14^{14}C rapidly increasing events have been found. Plausible causes of these events include large solar proton events, supernovae or short gamma-ray bursts. However, due to the lack of measurements of 14^{14}C by year, the occurrence frequency of such 14^{14}C rapidly increasing events is poorly known. In addition, rapid increases may be hidden in the IntCal13 data with five-year resolution. Here we report the result of 14^{14}C measurements using an ancient buried tree during the period between BC 3388 and 3358. We find a rapid increase of about 9\textperthousand~ in the 14^{14}C content from BC 3372 to BC 3371. We suggest that this event could originate from a large solar proton event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication

    An unexpectedly low-redshift excess of Swift gamma-ray burst rate

    Get PDF
    Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use GRBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bell's cc^- method to study the luminosity function and rate of \emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as L(z)g(z)=(1+z)kL(z)\propto g(z)=(1+z)^k with k=2.430.38+0.41k=2.43_{-0.38}^{+0.41}. After correcting the redshift evolution through L0(z)=L(z)/g(z)L_0(z)=L(z)/g(z), the luminosity function can be expressed as ψ(L0)L00.14±0.02\psi(L_0)\propto L_0^{-0.14\pm0.02} for dim GRBs and ψ(L0)L00.70±0.03\psi(L_0)\propto L_0^{-0.70\pm0.03} for bright GRBs, with the break point L0b=1.43×1051 erg s1L_{0}^{b}=1.43\times10^{51}~{\rm erg~s^{-1}}. We also find that the formation rate of GRBs is almost constant at z<1.0z<1.0 for the first time, which is remarkably different from the SFR. At z>1.0z>1.0, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and logNlogS\log N-\log S distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at z<1.0z<1.0.Comment: 33 pages, 10 figures, 1 table, accepted by ApJ

    Beaming Effects in Gamma-Ray Bursts

    Get PDF
    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). A slightly revised version will appear in the proceeding
    corecore