6,875 research outputs found

    Early Afterglows of Gamma-Ray Bursts in a Stratified Medium with a Power-Law Density Distribution

    Full text link
    A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of nRkn\propto R^{-k} (where RR is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs, and find that their kk values are in the range of 0.4 - 1.4, with a typical value of k1k\sim1, implying that this environment is neither a homogenous interstellar medium with k=0k=0 nor a typical stellar wind with k=2k=2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution.Comment: 32 pages, 5 figures, 1 table, published in Ap

    Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers

    Full text link
    As the technology of gravitational-wave and neutrino detectors becomes increasingly mature, a multi-messenger era of astronomy is ushered in. Advanced gravitational wave detectors are close to making a ground-breaking discovery of gravitational wave bursts (GWBs) associated with mergers of double neutron stars (NS-NS). It is essential to study the possible electromagnetic (EM) and neutrino emission counterparts of these GWBs. Recent observations and numerical simulations suggest that at least a fraction of NS-NS mergers may leave behind a massive millisecond magnetar as the merger product. Here we show that protons accelerated in the forward shock powered by a magnetar wind pushing the ejecta launched during the merger process would interact with photons generated in the dissipating magnetar wind and emit high energy neutrinos and photons. We estimate the typical energy and fluence of the neutrinos from such a scenario. We find that \simPeV neutrinos could be emitted from the shock front as long as the ejecta could be accelerated to a relativistic speed. The diffuse neutrino flux from these events, even under the most optimistic scenarios, is too low to account for the two events announced by the IceCube Collaboration, but it is only slightly lower than the diffuse flux of GRBs, making it an important candidate for the diffuse background of \simPeV neutrinos. The neutron-pion decay of these events make them a moderate contributor to the sub-TeV gamma-ray diffuse background.Comment: Accepted for publication in PRD, minor revisio

    Development and construction of China

    Get PDF
    Libraries in China's higher education institutions have been developing in keeping pace with the flourishing development of China's higher education. This article aims to make an introduction to the construction of China's higher education libraries, especially the recent three decades' achievements since China's reform and opening-up in 1978. In this article, the authors draw a general picture of the development of libraries in China's higher education institutions, covering such eight aspects as management, types and positioning, organizational structure and personnel, expenditure and buildings, reader service, building and sharing of resources as well as automation system.</p
    corecore