29,636 research outputs found
Enhanced visibility of graphene: effect of one-dimensional photonic crystal
We investigate theoretically the light reflectance of a graphene layer
prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is
shown that the visibility of the graphene layers is enhanced greatly when 1DPC
is added, and the visibility can be tuned by changing the incident angle and
light wavelengths. This phenomenon is caused by the absorption of the graphene
layer and the enhanced reflectance of the 1DPC.Comment: 4 pages, 4 figures. published, ApplPhysLett_91_18190
Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry
We perform a complete classification of two-band \bk\cdot\mathbf{p}
theories at band crossing points in 3D semimetals with -fold rotation
symmetry and broken time-reversal symmetry. Using this classification, we show
the existence of new 3D topological semimetals characterized by
-protected double-Weyl nodes with quadratic in-plane (along )
dispersion or -protected triple-Weyl nodes with cubic in-plane dispersion.
We apply this theory to the 3D ferromagnet HgCrSe and confirm it is a
double-Weyl metal protected by symmetry. Furthermore, if the direction of
the ferromagnetism is shifted away from the [001]- to the [111]-axis, the
double-Weyl node splits into four single Weyl nodes, as dictated by the point
group of that phase. Finally, we discuss experimentally relevant effects
including splitting of multi-Weyl nodes by applying breaking strain and
the surface Fermi arcs in these new semimetals.Comment: 4+ pages, 2 figures, 1 tabl
On data skewness, stragglers, and MapReduce progress indicators
We tackle the problem of predicting the performance of MapReduce
applications, designing accurate progress indicators that keep programmers
informed on the percentage of completed computation time during the execution
of a job. Through extensive experiments, we show that state-of-the-art progress
indicators (including the one provided by Hadoop) can be seriously harmed by
data skewness, load unbalancing, and straggling tasks. This is mainly due to
their implicit assumption that the running time depends linearly on the input
size. We thus design a novel profile-guided progress indicator, called
NearestFit, that operates without the linear hypothesis assumption and exploits
a careful combination of nearest neighbor regression and statistical curve
fitting techniques. Our theoretical progress model requires fine-grained
profile data, that can be very difficult to manage in practice. To overcome
this issue, we resort to computing accurate approximations for some of the
quantities used in our model through space- and time-efficient data streaming
algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive
empirical assessment over the Amazon EC2 platform on a variety of real-world
benchmarks shows that NearestFit is practical w.r.t. space and time overheads
and that its accuracy is generally very good, even in scenarios where
competitors incur non-negligible errors and wide prediction fluctuations.
Overall, NearestFit significantly improves the current state-of-art on progress
analysis for MapReduce
Semileptonic B decays into excited charmed mesons from QCD sum rules
Exclusive semileptonic decays into excited charmed mesons are studied
with QCD sum rules in the leading order of heavy quark effective theory. Two
universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into
four lowest lying excited mesons (, , , and ) are
determined. The decay rates and branching ratios for these processes are
calculated.Comment: RevTeX, 17 pages including 2 figure
Lateral in-plane coupling between graphene nanoribbons: a density functional study
Properties brought about by lateral in-plane coupling between graphene nanoribbons (GNRs) are investigated using the first-principle total energy calculations. It is found that, when two GNRs approach each other, the lateral coupling between the two brings about edge state splitting. Between zigzag-edged graphene nanoribbons (ZGNRs), the coupling mainly results from Coulomb and spin-spin interaction, while for armchair-edged graphene nanoribbons (AGNRs), it is from Coulomb interaction only. It is further found that the maximum inter-ribbon distance for effective coupling depends on the type of ribbons, which is ∼10 Å for ZGNRs, but ∼6 Å for AGNRs. Also, displacements of the GNRs along the ribbon direction are found to affect the electronic properties of the coupled GNRs. The results may be important for the microminiaturization of future nanoelectronic and spintronic devices based on graphene. © 2012 American Institute of Physics.published_or_final_versio
- …