25,315 research outputs found

    Image Properties of Embedded Lenses

    Full text link
    We give analytic expressions for image properties of objects seen around point mass lenses embedded in a flat Λ\LambdaCDM universe. An embedded lens in an otherwise homogeneous universe offers a more realistic representation of the lens's gravity field and its associated deflection properties than does the conventional linear superposition theory. Embedding reduces the range of the gravitational force acting on passing light beams thus altering all quantities such as deflection angles, amplifications, shears and Einstein ring sizes. Embedding also exhibits the explicit effect of the cosmological constant on these same lensing quantities. In this paper we present these new results and demonstrate how they can be used. The effects of embedding on image properties, although small i.e., usually less than a fraction of a percent, have a more pronounced effect on image distortions in weak lensing where the effects can be larger than 10%. Embedding also introduces a negative surface mass density for both weak and strong lensing, a quantity altogether absent in conventional Schwarzschild lensing. In strong lensing we find only one additional quantity, the potential part of the time delay, which differs from conventional lensing by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ−2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2∗D_2^*, D0′D'_0, and D1′D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries

    Full text link
    The equation of state for a two-dimensional hard-sphere gas is difficult to calculate by usual methods. In this paper we develop an approach for calculating the equation of state of hard-sphere gases, both for two- and three-dimensional cases. By regarding a hard-sphere gas as an ideal gas confined in a container with a multi-core (excluded sphere) boundary, we treat the hard-sphere interaction in an interacting gas as the boundary effect on an ideal quantum gas; this enables us to treat an interacting gas as an ideal one. We calculate the equation of state for a three-dimensional hard-sphere gas with spin jj, and compare it with the results obtained by other methods. By this approach the equation of state for a two-dimensional hard-sphere gas can be calculated directly.Comment: 9 pages, 1 figur

    The observation of a positive magnetoresistance and close correlation among lattice, spin and charge around TC in antipervoskite SnCMn3

    Full text link
    The temperature dependences of magnetization, electrical transport, and thermal transport properties of antiperovskite compound SnCMn3 have been investigated systematically. A positive magnetoresistance (~11%) is observed around the ferrimagnetic-paramagnetic transition (TC ~ 280 K) in the field of 50 kOe, which can be attributed to the field-induced magnetic phase transition. The abnormalities of resistivity, Seebeck coefficient, normal Hall effect and thermal conductivity near TC are suggested to be associated with an abrupt reconstruction of electronic structure. Further, our results indicate an essential interaction among lattice, spin and charge degrees of freedom around TC. Such an interaction among various degrees of freedom associated with sudden phase transition is suggested to be characteristic of Mn-based antiperovskite compounds.Comment: 13 pages, 5 figure

    Reduced dynamics of Ward solitons

    Full text link
    The moduli space of static finite energy solutions to Ward's integrable chiral model is the space MNM_N of based rational maps from \CP^1 to itself with degree NN. The Lagrangian of Ward's model gives rise to a K\"ahler metric and a magnetic vector potential on this space. However, the magnetic field strength vanishes, and the approximate non--relativistic solutions to Ward's model correspond to a geodesic motion on MNM_N. These solutions can be compared with exact solutions which describe non--scattering or scattering solitons.Comment: Final version, to appear in Nonlinearit
    • …
    corecore