240 research outputs found

    Block Spin Ground State and 3-Dimensionality of (K,Tl)Fe1.6_{1.6}Se2_2

    Full text link
    The magnetic properties and electronic structure of (K,Tl)y Fe1.6 Se2 is studied using first-principles calculations. The ground state is checkerboard antiferromagnetically coupled blocks of the minimal Fe4 squares, with a large block spin moment ~11.2{\mu}B . The magnetic interactions could be modelled with a simple spin model involving both the inter- and intra-block, as well as the n.n. and n.n.n. couplings. The calculations also suggest a metallic ground state except for y = 0.8 where a band gap ~400 - 550 meV opens, showing an antiferromagnetic insulator ground state for (K,Tl)0.8 Fe1.6 Se2 . The electronic structure of the metallic (K,Tl)y Fe1.6 Se2 is highly 3-dimensional with unique Fermi surface structure and topology. These features indicate that the Fe-vacancy ordering is crucial to the physical properties of (K,Tl)y Fe2-x Se2 .Comment: Magnetic coupling constants double checked, journal ref. adde

    Correlation effects in the iron pnictides

    Full text link
    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of the charge transport and dynamics, single-electron excitation spectrum, and magnetic ordering and dynamics. We outline the evidence that the parent compounds, while metallic, have electron interactions that are sufficiently strong to produce incipient Mott physics. In other words, in terms of the strength of electron correlations compared to the kinetic energy, the iron pnictides are closer to intermediately-coupled systems lying at the boundary between itinerancy and localization, such as V2O3 or Se-doped NiS2, rather than to simple antiferromagnetic metals like Cr. This level of electronic correlations produces a new small parameter for controlled theoretical analyses, namely the fraction of the single-electron spectral weight that lies in the coherent part of the excitation spectrum. Using this expansion parameter, we construct the effective low-energy Hamiltonian and discuss its implications for the magnetic order and magnetic quantum criticality. Finally, this approach sharpens the notion of magnetic frustration for such a metallic system, and brings about a multiband matrix t-J1-J2 model for the carrier-doped iron pnictides.Comment: 14 pages, 2 figures, discussions on several points expanded, published in the Focus Issue on Iron-Based Superconductor
    • …
    corecore