5 research outputs found

    High-Voltage Cathode α-Fe<sub>2</sub>O<sub>3</sub>Nanoceramics for Rechargeable Sodium-Ion Batteries

    No full text
    Previously, α-Fe2O3 nanocrystals are recognized as anode materials owing to their high capacity and multiple properties. Now, this work provides high-voltage α-Fe2O3 nanoceramics cathodes fabricated by the solvothermal and calcination processes for sodium-ion batteries (SIBs). Then, their structure and electrical conductivity were investigated by the first-principles calculations. Also, the SIB with the α-Fe2O3 nanoceramics cathode exhibits a high initial charge-specific capacity of 692.5 mA h g-1 from 2.0 to 4.5 V at a current density of 25 mA g-1. After 800 cycles, the discharge capacity is still 201.8 mA h g-1, well exceeding the one associated with the present-state high-voltage SIB. Furthermore, the effect of the porous structure of the α-Fe2O3 nanoceramics on sodium ion transport and cyclability is investigated. This reveals that α-Fe2O3 nanoceramics will be a remarkably promising low-cost and pollution-free high-voltage cathode candidate for high-voltage SIBs.Electronic Components, Technology and Material

    Bio-inspired combinable self-powered soft device operating during the disintegration and reconstruction for next-generation artificial electric organs

    No full text
    Hydrogel materials have biocompatibility, flexibility, transparency, self-healing ability, adhesion with various substrates, anti-freeze ability, and high-temperature resistance. However, the existing hydrogel devices cannot continue to operate in the case of damage, and they cannot work during the repair period, which brings great challenges and threats to life safety. Herein, we have designed a bio-inspired combinable low-power device by imitating the generation of nerve signals whose components can be disassembled and can continue to operate during the period of reconstruction. And the mechanism and determinants of the above phenomena are revealed. The results indicate that this device can establish some information interaction relationships with the body or its surroundings to reflect and identify certain changes, implying that it will possess promising potential in feedback systems, power transformers, intelligence systems, soft robotics, wearable devices, implanted electronics with flexible characteristics matching biological tissues, etc.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Novel Solid-State Sodium-Ion Battery with Wide Band Gap NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> Nanocrystal Electrolyte

    No full text
    NaTi2(PO4)3 (NTP), a well-known anode material, could be used as a solid wide-band gap electrolyte. Herein, a novel solid-state sodium-ion battery (SSIB) with the thickness of electrolyte up to the millimeter level is proposed. The results of the difference in charge density investigated by the first-principles calculations imply that using the NTP nanocrystals as electrolytes to transport sodium ions is feasible. Moreover, the SSIB exhibits a high initial discharge capacity of 3250 mAh g-1 at the current density of 50 mA g-1. As compared with other previously reported SSIBs, our results are better than those reported and suggest that the NTP nanocrystals have potential application in SSIBs as solid electrolytes.Electronic Components, Technology and Material

    Polyacrylamide-Poly(vinyl alcohol)-Sodium Alginate-Reduced Graphene Oxide/Nylon Fabrics with Multistimuli Responses

    No full text
    In recent years, various functional fabrics capable of responding to multistimuli have been widely recognized as promising wearable devices. However, the obtained composite functional fabrics have only been applied in a few scenarios, rendering the achievement of multifunctional wearable application scenarios a difficult goal. Therefore, there is an urgent need to expand the diversity of wearable applications for functional fabrics. Herein, we design hydrogel composite fabrics capable of responding to multiple stimuli, including vibration, temperature, strain, and pressure, to enable wearable multiapplication scenarios. The hydrogel composite fabrics, based on nylon fabrics (NFs), are fabricated with polyacrylamide (PAM)-poly(vinyl alcohol) (PVA)-sodium alginate (SA)-reduced graphene oxide (rGO)/NFs (PAM-PVA-SA-rGO/NFs). The PAM-PVA-SA-rGO/NFs exhibit a higher elastic stiffness coefficient (2.79 N cm-1) than the blank NFs (1.76 N cm-1), good temperature sensitivity in the range of 30-80 °C, and excellent detecting ability for urine presence with a threshold of unit area of 2.55 × 10-3 mL cm-2. The PAM-PVA-SA-rGO/NFs can not only respond to multiple stimuli but also be integrated into clothing for wearable multiapplication scenarios, such as detecting human speaking and breathing, intelligent sleeves, and diaper alarms. Additionally, the mechanisms of the above phenomena are revealed. These results indicate that the PAM-PVA-SA-rGO/NFs will provide inspiration for the development of intelligence systems, feedback devices, soft robotics, wearable devices, etc.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Effective Approaches of Improving the Performance of Chalcogenide Solid Electrolytes for All-Solid-State Sodium-Ion Batteries

    No full text
    All-solid-state sodium-ion batteries (SIBs) possess the advantages of rich resources, low price, and high security, which are one of the best alternatives for large-scale energy storage systems in the future. Also, the chalcogenide solid electrolytes (CSEs) of SIBs have the characteristics of excellent room-temperature ionic conductivity (10−3-10−2 S cm−1), low activation energy (&lt;0.6 eV), easy cold-pressing consolidation, etc. Hence, CSEs have become a very active area of all-solid-state SIB research in recent years. In this review, the modification methods and implementation technologies of CSEs are summarized, and the structure and electrochemical performance of the CSEs are discussed. Furthermore, the auxiliary function of first-principle calculations for modification is introduced. Ultimately, we describe the challenges regarding CSEs and propose some strategic suggestions.Electronic Components, Technology and Material
    corecore