1,004 research outputs found
Polyaxial figures of the Moon from the lunar reconnaissance orbiter laser altimetry and multi-mission synthesis of the lunar shape
2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Polyaxial figures of the moon
Author name used in this publication: X. L. Ding2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Orientation of the geometrically best fitting triaxial lunar ellipsoid with respect to the mean earth/polar axis reference frame
Author name used in this publication: X. L. Ding2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
An improved geometric lunar figure from Chang’E-1 and SELENE laser altimetry
2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed
Self-Organized Ni Nanocrystal Embedded in BaTiO3 Epitaxial Film
Ni nanocrystals (NCs) were embedded in BaTiO3 epitaxial films using the laser molecular beam epitaxy. The processes involving the self-organization of Ni NCs and the epitaxial growth of BaTiO3 were discussed. With the in situ monitoring of reflection high-energy electron diffraction, the nanocomposite films were engineered controllably by the fine alternation of the self-organization of Ni NCs and the epitaxial growth of BaTiO3. The transmission electron microscopy and the X-ray diffraction characterization confirmed that the composite film consists of the Ni NCs layers alternating with the (001)/(100)-oriented epitaxial BaTiO3 separation layers
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
Recent years have witnessed much progress in computational modelling for protein subcellular localization. However, the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance, and the gene ontology (GO) based models may take the risk of performance overestimation for novel proteins. Furthermore, many human proteins have multiple subcellular locations, which renders the computational modelling more complicated. Up to the present, there are far few researches specialized for predicting the subcellular localization of human proteins that may reside in multiple cellular compartments. In this paper, we propose a multi-label multi-kernel transfer learning model for human protein subcellular localization (MLMK-TLM). MLMK-TLM proposes a multi-label confusion matrix, formally formulates three multi-labelling performance measures and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which to further extends our published work GO-TLM (gene ontology based transfer learning model for protein subcellular localization) and MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for multiplex human protein subcellular localization. With the advantages of proper homolog knowledge transfer, comprehensive survey of model performance for novel protein and multi-labelling capability, MLMK-TLM will gain more practical applicability. The experiments on human protein benchmark dataset show that MLMK-TLM significantly outperforms the baseline model and demonstrates good multi-labelling ability for novel human proteins. Some findings (predictions) are validated by the latest Swiss-Prot database. The software can be freely downloaded at http://soft.synu.edu.cn/upload/msy.rar
Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles
Origin of shifts in the surface plasmon resonance (SPR) frequency for noble
metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of
electron from the Fermi surface is considered as the origin of red shift. On
the other hand, both screening of electrons of the noble metal in porous media
and quantum effect of screen surface electron are considered for the observed
blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual
Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
- …