186,637 research outputs found

    Exact Simulation for Diffusion Bridges: An Adaptive Approach

    Get PDF
    Exact simulation approaches for a class of diffusion bridges have recently been proposed based on rejection sampling techniques. The existing rejection sampling methods may not be practical owing to small acceptance probabilities. In this paper we propose an adaptive approach that improves the existing methods significantly under certain scenarios. The idea of the new method is based on a layered process, which can be simulated from a layered Brownian motion with reweighted layer probabilities. We will show that the new exact simulation method is more efficient than existing methods theoretically and via simulation

    A New Class of Backward Stochastic Partial Differential Equations with Jumps and Applications

    Full text link
    We formulate a new class of stochastic partial differential equations (SPDEs), named high-order vector backward SPDEs (B-SPDEs) with jumps, which allow the high-order integral-partial differential operators into both drift and diffusion coefficients. Under certain type of Lipschitz and linear growth conditions, we develop a method to prove the existence and uniqueness of adapted solution to these B-SPDEs with jumps. Comparing with the existing discussions on conventional backward stochastic (ordinary) differential equations (BSDEs), we need to handle the differentiability of adapted triplet solution to the B-SPDEs with jumps, which is a subtle part in justifying our main results due to the inconsistency of differential orders on two sides of the B-SPDEs and the partial differential operator appeared in the diffusion coefficient. In addition, we also address the issue about the B-SPDEs under certain Markovian random environment and employ a B-SPDE with strongly nonlinear partial differential operator in the drift coefficient to illustrate the usage of our main results in finance.Comment: 22 pagea, 1 figur
    • …
    corecore