26 research outputs found

    Asymptomatic Malaria Carriage in South-Western Burkina Faso: An Epidemiological Analysis

    Get PDF
    Background: Burkina Faso is challenged by rise in malaria incidence and insecticide and drug resistance. We investigated the prevalence of asymptomatic infection of Plasmodium falciparum. over three surveys.Subjects dan Method: We conducted repeated cross-sectional surveys in September and December 2016 and June 2017 in Diebougou health district. An initial census identified 4,028 subjects aged 6 months to 18 years. The independent variables included the age or date of birth, dependant were the area of residence, the use of bed nets, presence of not of parasites, the period of the surveys and the presence or absence of clinical signs/symptoms/fever, the gender. We used electronic case report forms for data collection, then uploaded into electronic tablets PCs, transferred to a central server. Data were analyzed with R version 3.4.3 software. Baseline chara

    Efficacy of a ‘lethal house lure’ against Culex quinquefasciatus from Bouaké city, Côte d’Ivoire

    Get PDF
    Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions. Methods: Larvae of Cx. quinquefasciatus from Bouaké were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release–recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species. Results: Bouaké Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure. Conclusions: Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed

    Asymptomatic Malaria Carriage in South-Western Burkina Faso: An Epidemiological Analysis

    Get PDF
    Background: Burkina Faso is challenged by rise in malaria incidence and insecticide and drug resistance. We investigated the prevalence of asymptomatic infection of Plasmodium falciparum. over three surveys. Subjects dan Method: We conducted repeated cross-sectional surveys in September and December 2016 and June 2017 in Diebougou health district. An initial census identified 4,028 subjects aged 6 months to 18 years. The independent variables included the age or date of birth, dependant were the area of residence, the use of bed nets, presence of not of parasites, the period of the surveys and the presence or absence of clinical signs/symptoms/fever, the gender. We used electronic case report forms for data collection, then uploaded into electronic tablets PCs, transferred to a central server. Data were analyzed with R version 3.4.3 software. Baseline chara

    Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d’Ivoire: a study prior to a Bti-based larviciding intervention

    Full text link
    Abstract Background Although larviciding may be a valuable tool to supplement long-lasting insecticide nets (LLINs) in West Africa in different ecological settings, its actual impact on malaria burden and transmission has yet to be demonstrated. A randomized controlled trial was therefore undertaken to assess the effectiveness of larviciding using Bacillus thuringiensis israeliensis (Bti) in addition to the use of LLINs. In order to optimally implement such a larviciding intervention, we first aimed to identify and to characterize the breeding habitats of Anopheles spp. in the entire study area located in the vicinity of Korhogo in northern Côte d’Ivoire. Methods We conducted two surveys during the rainy and the dry season, respectively, in the thirty villages around Korhogo involved in the study. In each survey, water bodies located within a 2 km radius around each village were identified and assessed for the presence of mosquito larvae. We morphologically identified the larvae to the genus level and we characterized all of the habitats positive for Anopheles spp. larvae based on a predefined set of criteria. Results Overall, 620 and 188 water bodies positive for Anopheles spp. larvae were sampled in the rainy and the dry season, respectively. A broad range of habitat types were identified. Rice paddies accounted for 61% and 57% of the habitats encountered in the rainy and the dry season, respectively. In the rainy season, edges of rivers and streams (12%) were the second most abundant habitats for Anopheles spp. larvae. More than 90% of the Anopheles spp. breeding habitats were surrounded by green areas. Dams, ponds and drains produced higher numbers of Anopheles spp. larvae per square meter than rice paddies (RR = 1.51; 95% CI: 1.18–1.94; P = 0.0010). The density of Anopheles spp. larvae was significantly higher in habitats surrounded by low-density housing (RR = 4.81; 95% CI: 1.84–12.60; P = 0.0014) and green areas (RR = 3.96; 95% CI: 1.92–8.16; P = 0.0002] than habitats surrounded by high-density housing. Turbid water [RR = 1.42 (95% CI: 1.15–1.76; P = 0.0012) was associated with higher densities of Anopheles spp. larvae. The likelihood of finding mosquito pupae in Anopheles spp. breeding habitats was higher in the dry season (OR = 5.92; 95% CI: 2.11–16.63; P = 0.0007) than in the rainy season. Conclusions Rice paddies represented the most frequent habitat type for Anopheles spp. larvae in the Korhogo area during both the rainy and the dry seasons. Anopheles spp. breeding habitats covered a very large and dynamic area in the rainy season whereas they were fewer in number in the dry season. In this context, implementing a larviciding strategy from the end of the rainy season to the dry season is presumably the most cost-effective strategy

    Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae

    Full text link
    Abstract Background Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages. Methods The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m2, 1.5 g/m2, and 2 g/m2) was monitored under semi-field conditions using a total of 32 containers comprising 16 that were covered and 16 that were uncovered. Two experiments were conducted using first- and second-instar larvae of Anopheles gambiae, respectively. Results BTBSWAX at 2 g/m2 in covered containers exhibited high emergence inhibition (> 80%) when larvae were exposed from 1st instar on day-6 post-treatment, whereas the emergence inhibition was only 28% in uncovered containers. For larvae exposed from 1st instar on day-12 post-treatment, the emergence inhibition was moderate (70%) in covered containers but was low (< 20%) in uncovered containers. For larvae exposed from 2nd instar on day-10 post-treatment, the emergence inhibition was moderate (31%) in covered containers but was very low (< 10%) in uncovered containers. Moreover, the residual efficacy of BTBSWAX was markedly affected by environmental stresses, including sunlight exposure (Hazard ratio (HR) = 0.12, p < 0.001 and HR = 0.63, p = 0.033 for BTBSWAX at 2 g/m2 against 1st and 2nd instar larvae, respectively). Conclusion These findings emphasize the impact of environmental variables (e.g., sunlight exposure) on the residual efficacy of Bti and Bs biolarvicides in the field. They hence highlight the need to take these factors into account for larvicide formulation development processes. Moreover, studies of the ecology of Anopheles larvae in targeted areas are also crucial for the integration of larval control strategies into malaria transmission plans devised by national malaria control programmes of endemic countries

    Durability of the deltamethrin-treated polypropylene long-lasting net LifeNet® in a pyrethroid resistance area in south western Benin: A phase III trial

    Full text link
    International audienceBackground: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet ® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet ® in a Phase III trial from June 2014 to June 2017 in Benin rural area.Methods: A prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity.Results: At baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones.Conclusion: LifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countrie

    S1 File -

    Full text link
    BackgroundLong-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area.MethodsA prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity.ResultsAt baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones.ConclusionLifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countries.</div

    Anopheles bionomics, insecticide resistance mechanisms, and malaria transmission in the Korhogo area, northern Côte d’Ivoire: a pre-intervention study

    Full text link
    International audienceA better understanding of malaria transmission at a local scale is essential for developing and implementing effective control strategies. In the framework of a randomized controlled trial (RCT), we aimed to provide an updated description of malaria transmission in the Korhogo area, northern Côte d'Ivoire, and to obtain baseline data for the trial. We performed human landing collections (HLCs) in 26 villages in the Korhogo area during the rainy season (September-October 2016, April-May 2017) and the dry season (November-December 2016, February-March 2017). We used PCR techniques to ascertain the species of the Anopheles gambiae complex, Plasmodium falciparum sporozoite infection, and insecticide resistance mechanisms in a subset of Anopheles vectors. Anopheles gambiae s.l. was the predominant malaria vector in the Korhogo area. Overall, more vectors were collected outdoors than indoors (p < 0.001). Of the 774 An. gambiae s.l. tested in the laboratory, 89.65% were An. gambiae s.s. and 10.35% were An. coluzzii. The frequencies of the kdr allele were very high in An. gambiae s.s. but the ace-1 allele was found at moderate frequencies. An unprotected individual living in the Korhogo area received an average of 9.04, 0.63, 0.06 and 0.12 infected bites per night in September-October, November-December, February-March, and April-May, respectively. These results demonstrate that the intensity of malaria transmission is extremely high in the Korhogo area, especially during the rainy season. Malaria control in highly endemic areas such as Korhogo needs to be strengthened with complementary tools in order to reduce the burden of the disease.Une meilleure connaissance de la transmission du paludisme à l’échelle locale est essentielle pour élaborer et mettre en œuvre des stratégies de lutte efficaces. Dans le cadre d’un essai contrôlé randomisé, nous avons pour objectifs de fournir une description actualisée de la transmission du paludisme dans la zone de Korhogo, au nord de la Côte d’Ivoire, et de collecter les données de base pour l’essai. Nous avons capturé les moustiques sur des volontaires humains dans 26 villages de la zone de Korhogo pendant la saison pluvieuse (septembre–octobre 2016, avril–mai 2017) et la saison sèche (novembre–décembre 2016, février–mars 2017). À l’aide des techniques de PCR, nous avons déterminé les espèces au sein du complexe Anopheles gambiae, les infections par Plasmodium falciparum au stade sporozoïte et les mécanismes de résistance aux insecticides dans un sous-échantillon d’anophèles vecteurs. Anopheles gambiae s.l. est de loin le vecteur majoritaire du paludisme dans la zone de Korhogo. Au total, plus de vecteurs ont été collectés à l’extérieur des habitations qu’à l’intérieur (p < 0.001). Des 774 An. gambiae s.l. analysés au laboratoire, 89,65 % étaient An. gambiae s.s. et 10,35 % An. coluzzii. Les fréquences alléliques du gène kdr étaient très élevées chez An. gambiae s.s. alors que les fréquences alléliques du gène ace-1 étaient modérées. Une personne non protégée vivant à Korhogo reçoit chaque nuit en moyenne 9,04 piqûres infectantes (pi) en septembre–octobre, 0,63 pi en novembre–décembre, 0,06 pi en février-mars et 0,12 pi en avril–mai. Ces résultats démontrent que l’intensité de la transmission du paludisme est très élevée dans la zone de Korhogo, particulièrement en saison pluvieuse. La lutte contre le paludisme dans les zones de forte endémicité comme Korhogo doit être renforcée par des outils complémentaires afin de réduire le fardeau de la maladie
    corecore