4 research outputs found

    Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints

    Full text link
    The Tikhonov regularization of linear ill-posed problems with an â„“1\ell^1 penalty is considered. We recall results for linear convergence rates and results on exact recovery of the support. Moreover, we derive conditions for exact support recovery which are especially applicable in the case of ill-posed problems, where other conditions, e.g. based on the so-called coherence or the restricted isometry property are usually not applicable. The obtained results also show that the regularized solutions do not only converge in the â„“1\ell^1-norm but also in the vector space â„“0\ell^0 (when considered as the strict inductive limit of the spaces Rn\R^n as nn tends to infinity). Additionally, the relations between different conditions for exact support recovery and linear convergence rates are investigated. With an imaging example from digital holography the applicability of the obtained results is illustrated, i.e. that one may check a priori if the experimental setup guarantees exact recovery with Tikhonov regularization with sparsity constraints

    Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach

    No full text
    Abstract: This paper is concerned with the development of adaptive numerical methods for elliptic operator equations. We are particularly interested in discretization schemes based on wavelet frames. We show that by using three basic subroutines an implementable, convergent scheme can be derived, which, moreover, has optimal computational complexity. The scheme is based on adaptive steepest descent iterations. We illustrate our findings by numerical results for the computation of solutions of the Poisson equation with limited Sobolev smoothness on intervals in 1D and L-shaped domains in 2D
    corecore