36 research outputs found

    Odds of observing the multiverse

    Full text link
    Eternal inflation predicts our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that lies in the forward light-cone of a collision; in the case of collisions with bubbles of identical vacua, this bound given by the bubble nucleation rate times (HO/HI)2H_{\rm{O}}/H_{\rm{I}})^2, where HOH_{\rm{O}} is the Hubble scale outside the bubbles and HIH_{\rm{I}} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel \emph{et al.} using a different method for the case of collisions with bubbles of much larger cosmological constant; here it is shown to hold in the case of collisions with identical bubbles as well. A significant error in a previous draft was corrected in order to arrive at this result.Comment: 21 pages, 12 figures; a significant error was correcte

    On 'Nothing'

    Full text link
    Nothing---the absence of spacetime---can be either an endpoint of tunneling, as in the bubble of nothing, or a starting point for tunneling, as in the quantum creation of a universe. We argue that these two tunnelings can be treated within a unified framework, and that, in both cases, nothing should be thought of as the limit of anti-de Sitter space in which the curvature length approaches zero. To study nothing, we study decays in models with perturbatively stabilized extra dimensions, which admit not just bubbles of nothing---topology-changing transitions in which the extra dimensions pinch off and a hole forms in spacetime---but also a whole family of topology-preserving transitions that nonetheless smoothly hollow out and approach the bubble of nothing in one limit. The bubble solutions that are close to this limit, bubbles of next-to- nothing, give us a controlled setting in which to understand nothing. Armed with this understanding, we are able to embed proposed mechanisms for the reverse process, tunneling from nothing to something, within the relatively secure foundation of the Coleman-De Luccia formalism and show that the Hawking-Turok instanton does not mediate the quantum creation of a universe.Comment: 26 pages, 12 figures, v2: minor updates, published as "On 'Nothing' as an infinitely negatively curved spacetime

    Bubbles of Nothing and the Fastest Decay in the Landscape

    Full text link
    The rate and manner of vacuum decay are calculated in an explicit flux compactification, including all thick-wall and gravitational effects. For landscapes built of many units of a single flux, the fastest decay is usually to discharge just one unit. By contrast, for landscapes built of a single unit each of many different fluxes, the fastest decay is usually to discharge all the flux at once, which destabilizes the radion and begets a bubble of nothing. By constructing the bubble of nothing as the limit in which ever more flux is removed, we gain new insight into the bubble's appearance. Finally, we describe a new instanton that mediates simultaneous flux tunneling and decompactification. Our model is the thin-brane approximation to six-dimensional Einstein-Maxwell theory.Comment: 18 pages, 8 figures; v2: minor change

    Bubble Baryogenesis

    Get PDF
    We propose an alternative mechanism of baryogenesis in which a scalar baryon undergoes a percolating first-order phase transition in the early Universe. The potential barrier that divides the phases contains explicit B and CP violation and the corresponding instanton that mediates decay is therefore asymmetric. The nucleation and growth of these asymmetric bubbles dynamically generates baryons, which thermalize after percolation; bubble collision dynamics can also add to the asymmetry yield. We present an explicit toy model that undergoes bubble baryogenesis, and numerically study the evolution of the baryon asymmetry through bubble nucleation and growth, bubble collisions, and washout. We discuss more realistic constructions, in which the scalar baryon and its potential arise amongst the color-breaking minima of the MSSM, or in the supersymmetric neutrino seesaw mechanism. Phenomenological consequences, such as gravitational waves, and possible applications to asymmetric dark-matter generation are also discussed.Comment: 15 pages, 13 figures, references added, changes reflect published versio

    Giant Leaps and Minimal Branes in Multi-Dimensional Flux Landscapes

    Full text link
    There is a standard story about decay in multi-dimensional flux landscapes: that from any state, the fastest decay is to take a small step, discharging one flux unit at a time; that fluxes with the same coupling constant are interchangeable; and that states with N units of a given flux have the same decay rate as those with -N. We show that this standard story is false. The fastest decay is a giant leap that discharges many different fluxes in unison; this decay is mediated by a 'minimal' brane that wraps the internal manifold and exhibits behavior not visible in the effective theory. We discuss the implications for the cosmological constant.Comment: Minor updates to agree with published version. 9 pages, 4 figure

    Populating the Whole Landscape

    Full text link
    Every de Sitter vacuum can transition to every other de Sitter vacuum despite any obstacle, despite intervening anti-de Sitter sinks, despite not being connected by an instanton. Eternal inflation populates the whole landscape.Comment: 11 pages, 4 figures, minor improvement
    corecore