332 research outputs found

    PixColor: Pixel Recursive Colorization

    Full text link
    We propose a novel approach to automatically produce multiple colorized versions of a grayscale image. Our method results from the observation that the task of automated colorization is relatively easy given a low-resolution version of the color image. We first train a conditional PixelCNN to generate a low resolution color for a given grayscale image. Then, given the generated low-resolution color image and the original grayscale image as inputs, we train a second CNN to generate a high-resolution colorization of an image. We demonstrate that our approach produces more diverse and plausible colorizations than existing methods, as judged by human raters in a "Visual Turing Test"

    Vehicle Sobriety Checkpoints in Texas

    Get PDF
    Texas is consistently the leading state when it comes to traffic fatalities related to drunk driving. Texas leads the second highest state, California, by several hundred deaths in many years (Insurance Institute for Highway Safety, 1996-2018). The majority of other states (37) have implemented a system of driver checkpoints to assist police officers in identifying intoxicated drivers behind the wheel in vehicles (Governors Highway Safety Association, 2016). Texas, however, has not employed such a system. In order to reduce serious accidents and provide deterrence to driving while intoxicated (DWI) citations, the Texas Legislature should take action, and vehicle sobriety checkpoints should be implemented in Texas. This author asserts that instigating checkpoints in Texas would reduce injury and fatality accidents by providing a system for officers to stop drunk drivers prior to being involved in accidents. The paper will also show how checkpoints provide deterrence to drunk driving by increasing visibility of DWI arrests, as well as through public notification of the checkpoints in the media. Finally, this paper will review several counter arguments to DWI checkpoints that include constitutional challenges and a history of their use by police agencies for racial profiling

    Use of Electrocautery to Facilitate Suture Passage Through the Greater Trochanter of the Femur: A Biomechanical Study

    Get PDF
    Introduction. The specific aims of this study were to evaluate (1) the axial force reduction of suture passage utilizing electrocautery when applied to hip abductor repair, (2) the temperature change caused while using electrocautery for suture passage, and (3) the failure loads and failure modes utilizing this technique. Methods. Five matched pairs of fresh-frozen femurs were used and classified into with electrocautery on needle (study group) and without electrocautery on needle (control group). Two bicortical osseous tunnels were made around the insertion of the gluteus medius tendon. Each specimen was sequentially tested in a needle penetration test and a single load-to-failure test. A No. 5 Ethibond suture with a straight needle was used. Results. Electrocautery reduced the peak axial force for bone penetration in 40% (near cortex) and 70% (far cortex) of the trials, and no significant difference was detected between groups or between two osseous tunnels. The average peak force was significantly higher for the far cortex for both groups and for both osseous tunnels compared to the near cortex. There was no significant change in temperature of the tunnel site with electrocautery. 90% of the samples experienced bone tunnel failure for the study group compared to 70% in the control group. The average ultimate failure load for the study group was lower compared with the control group, but this finding was not statistically significant (range: 6%-15%). Conclusions. Suture passage using electrocautery does not significantly decrease the peak force needed to pass a needle directly through the greater trochanter

    Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil

    Get PDF
    The climate of maritime Antarctica has altered since the 1950s. However, the effects of increased temperature, precipitation and organic carbon and nitrogen availability on the fungal communities inhabiting the barren and oligotrophic fellfield soils that are widespread across the region are poorly understood. Here, we test how warming with open top chambers (OTCs), irrigation and the organic substrates glucose, glycine and tryptone soy broth (TSB) influence a fungal community inhabiting an oligotrophic maritime Antarctic fellfield soil. In contrast with studies in vegetated soils at lower latitudes, OTCs increased fungal community alpha diversity (Simpson’s index and evenness) by 102–142% in unamended soil after 5 years. Conversely, OTCs had few effects on diversity in substrate-amended soils, with their only main effects, in glycine-amended soils, being attributable to an abundance of Pseudogymnoascus. The substrates reduced alpha and beta diversity metrics by 18–63%, altered community composition and elevated soil fungal DNA concentrations by 1–2 orders of magnitude after 5 years. In glycine-amended soil, OTCs decreased DNA concentrations by 57% and increased the relative abundance of the yeast Vishniacozyma by 45-fold. The relative abundance of the yeast Gelidatrema declined by 78% in chambered soil and increased by 1.9-fold in irrigated soil. Fungal DNA concentrations were also halved by irrigation in TSB-amended soils. In support of regional- and continental-scale studies across climatic gradients, the observations indicate that soil fungal alpha diversity in maritime Antarctica will increase as the region warms, but suggest that the accumulation of organic carbon and nitrogen compounds in fellfield soils arising from expanding plant populations are likely, in time, to attenuate the positive effects of warming on diversity. Antarctica, climate warming, open top chambers (OTCs), organic carbon, organic nitrogen, soil fungal community diversity, yeastspublishedVersio

    Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil

    Get PDF
    The climate of maritime Antarctica has altered since the 1950s. However, the effects of increased temperature, precipitation and organic carbon and nitrogen availability on the fungal communities inhabiting the barren and oligotrophic fellfield soils that are widespread across the region are poorly understood. Here, we test how warming with open top chambers (OTCs), irrigation and the organic substrates glucose, glycine and tryptone soy broth (TSB) influence a fungal community inhabiting an oligotrophic maritime Antarctic fellfield soil. In contrast with studies in vegetated soils at lower latitudes, OTCs increased fungal community alpha diversity (Simpson’s index and evenness) by 102–142% in unamended soil after 5 years. Conversely, OTCs had few effects on diversity in substrate-amended soils, with their only main effects, in glycine-amended soils, being attributable to an abundance of Pseudogymnoascus. The substrates reduced alpha and beta diversity metrics by 18–63%, altered community composition and elevated soil fungal DNA concentrations by 1–2 orders of magnitude after 5 years. In glycine-amended soil, OTCs decreased DNA concentrations by 57% and increased the relative abundance of the yeast Vishniacozyma by 45-fold. The relative abundance of the yeast Gelidatrema declined by 78% in chambered soil and increased by 1.9-fold in irrigated soil. Fungal DNA concentrations were also halved by irrigation in TSB-amended soils. In support of regional- and continental-scale studies across climatic gradients, the observations indicate that soil fungal alpha diversity in maritime Antarctica will increase as the region warms, but suggest that the accumulation of organic carbon and nitrogen compounds in fellfield soils arising from expanding plant populations are likely, in time, to attenuate the positive effects of warming on diversity. Antarctica, climate warming, open top chambers (OTCs), organic carbon, organic nitrogen, soil fungal community diversity, yeastspublishedVersio

    A novel ruthenium-silver based antimicrobial potentiates aminoglycoside activity against Pseudomonas aeruginosa

    Get PDF
    The rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments in novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX, a broad-spec­trum antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to the connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogen Pseudomonas aeruginosa, we screened possible synergistic effects of AGXX on several antibiotic classes. We found that the combination of AGXX and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored the sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scaveng­ers. Additionally, P. aeruginosa strains deficient in ROS detoxifying/repair genes were more susceptible to AGXX/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with a significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobial

    Substandard Quality of the Antimicrobials Sold in the Street Markets in Haiti

    Get PDF
    This pilot study was conducted to analyze the quality of the antimicrobials sold in the street markets in Port-au-Prince, Haiti. A total of 258 packs containing antimicrobials were bought in 28 street markets in Port-au-Prince (Haiti). Tablets and contents of capsules included in 196 packs were analyzed using a Raman handheld spectrometer (NanoRAM of BWTEK, Model: BWS456-785) during the first quarter of 2019. Three out of 11 antimicrobials (Amoxicillin, Metronidazole, and Cotrimoxazole) had a high spectral match with an HQI ≥ 90 to the respective authentic medicine for more than 95% of their tablets/capsules. For six antimicrobials (Tetracycline, Erythromycin, Cloxacillin, Azithromycin, Clarithromycin, and the combination Amoxicillin + Clavulanic Acid) none of their tablets/capsules showed a sufficient spectral match with the authentic medicine. This finding indicates that these products sold in the markets did not contain the labeled drug and/or contained a degraded drug. In addition to the fact that prescription antimicrobials can be purchased in street markets, the present field study found that for most of them (including "Watch" antimicrobials according to the AWaRe classification) were substandard, which contributes to the present antimicrobials resistance epidemic

    Update on latex allergy: New insights into an old problem

    Get PDF
    Làtex; Gestió; A nivell mundialLatex; Management; WordwideLátex; Gestión; A nivel mundialDespite the efforts made to mitigate the consequences of this disease, natural rubber latex allergy (NRLA) continues to be a global health problem and is still considered one of the main worries in the working environment in many countries throughout the world. Due to thousands of products containing latex, it is not surprising that the current statistics suggest that prevalence remains high among healthcare workers and susceptible patients. In developed countries, reduction in the prevalence of IgE-mediated allergy to latex proteins from gloves may lead to lax attention by health care personnel. On the other hand, this situation is different in developing countries where there is a lack of epidemiological data associated with a deficit in education and awareness of this issue. The aim of this review is to provide an update of the current knowledge and practical recommendations regarding NRLA by allergologists from different parts of the world with experience in this field.The authors have not received any funding to prepare the manuscript

    Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil

    Get PDF
    The climate of maritime Antarctica has altered since the 1950s. However, the effects of increased temperature, precipitation and organic carbon and nitrogen availability on the fungal communities inhabiting the barren and oligotrophic fellfield soils that are widespread across the region are poorly understood. Here, we test how warming with open top chambers (OTCs), irrigation and the organic substrates glucose, glycine and tryptone soy broth (TSB) influence a fungal community inhabiting an oligotrophic maritime Antarctic fellfield soil. In contrast with studies in vegetated soils at lower latitudes, OTCs increased fungal community alpha diversity (Simpson’s index and evenness) by 102–142% in unamended soil after 5 years. Conversely, OTCs had few effects on diversity in substrate-amended soils, with their only main effects, in glycine-amended soils, being attributable to an abundance of Pseudogymnoascus. The substrates reduced alpha and beta diversity metrics by 18–63%, altered community composition and elevated soil fungal DNA concentrations by 1–2 orders of magnitude after 5 years. In glycine-amended soil, OTCs decreased DNA concentrations by 57% and increased the relative abundance of the yeast Vishniacozyma by 45-fold. The relative abundance of the yeast Gelidatrema declined by 78% in chambered soil and increased by 1.9-fold in irrigated soil. Fungal DNA concentrations were also halved by irrigation in TSB-amended soils. In support of regional- and continental-scale studies across climatic gradients, the observations indicate that soil fungal alpha diversity in maritime Antarctica will increase as the region warms, but suggest that the accumulation of organic carbon and nitrogen compounds in fellfield soils arising from expanding plant populations are likely, in time, to attenuate the positive effects of warming on diversity. Antarctica, climate warming, open top chambers (OTCs), organic carbon, organic nitrogen, soil fungal community diversity, yeastspublishedVersio

    PVN-LOT-414-C-005

    Get PDF
    UnlabelledEngineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.ImportanceThe use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production
    • …
    corecore