83 research outputs found

    Modeling hepatitis C micro-elimination among people who inject drugs with direct-acting antivirals in metropolitan Chicago

    Get PDF
    Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease and mortality worldwide. Direct-acting antiviral (DAA) therapy leads to high cure rates. However, persons who inject drugs (PWID) are at risk for reinfection after cure and may require multiple DAA treatments to reach the World Health Organization’s (WHO) goal of HCV elimination by 2030. Using an agent-based model (ABM) that accounts for the complex interplay of demographic factors, risk behaviors, social networks, and geographic location for HCV transmission among PWID, we examined the combination(s) of DAA enrollment (2.5%, 5%, 7.5%, 10%), adherence (60%, 70%, 80%, 90%) and frequency of DAA treatment courses needed to achieve the WHO’s goal of reducing incident chronic infections by 90% by 2030 among a large population of PWID from Chicago, IL and surrounding suburbs. We also estimated the economic DAA costs associated with each scenario. Our results indicate that a DAA treatment rate of >7.5% per year with 90% adherence results in 75% of enrolled PWID requiring only a single DAA course; however 19% would require 2 courses, 5%, 3 courses and <2%, 4 courses, with an overall DAA cost of $325 million to achieve the WHO goal in metropolitan Chicago. We estimate a 28% increase in the overall DAA cost under low adherence (70%) compared to high adherence (90%). Our modeling results have important public health implications for HCV elimination among U.S. PWID. Using a range of feasible treatment enrollment and adherence rates, we report robust findings supporting the need to address re-exposure and reinfection among PWID to reduce HCV incidence

    Hepatitis C virus RNA kinetics: Drug efficacy and the rate of HCV-infected cells loss

    Full text link

    Computational discovery of effective hepatitis C intervention strategies

    Full text link
    This project aims to develop a comprehensive, data-driven agent-based model for Hepatitis C Elimination in people who inject drugs (PWID) (HepCEP) using the Chicago PWID population as a template and proof of concept that would enable policy makers to identify the most effective intervention strategies for elimination of hepatitis C by 2030 based on the WHO proposed reduction estimates

    A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Full text link
    The multiscale model of hepatitis C virus (HCV) dynamics, which includes intracellular viral RNA (vRNA) replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level

    Advances in Parameter Estimation and Learning from Data for Mathematical Models of Hepatitis C Viral Kinetics

    Full text link
    Mathematical models, some of which incorporate both intracellular and extracellular hepatitis C viral kinetics, have been advanced in recent years for studying HCV&ndash;host dynamics, antivirals mode of action, and their efficacy. The standard ordinary differential equation (ODE) hepatitis C virus (HCV) kinetic model keeps track of uninfected cells, infected cells, and free virus. In multiscale models, a fourth partial differential equation (PDE) accounts for the intracellular viral RNA (vRNA) kinetics in an infected cell. The PDE multiscale model is substantially more difficult to solve compared to the standard ODE model, with governing differential equations that are stiff. In previous contributions, we developed and implemented stable and efficient numerical methods for the multiscale model for both the solution of the model equations and parameter estimation. In this contribution, we perform sensitivity analysis on model parameters to gain insight into important properties and to ensure our numerical methods can be safely used for HCV viral dynamic simulations. Furthermore, we generate in-silico patients using the multiscale models to perform machine learning from the data, which enables us to remove HCV measurements on certain days and still be able to estimate meaningful observations with a sufficiently small error

    Analysis of Hepatitis C Virus Infection Models with Hepatocyte Homeostasis

    Full text link
    • …
    corecore