1,758 research outputs found
Looking at the rope when looking for the snake: Conceptually mediated eye movements during spoken-word recognition
Participants' eye movements to four objects displayed on a computer screen were monitored as the participants clicked on the object named in a spoken instruction. The display contained pictures of the referent (e.g., a snake), a competitor that shared features with the visual representation associated with the referent's concept (e.g., a rope), and two distractor objects (e.g., a couch and an umbrella). As the first sounds of the referent's name were heard, the participants were more likely to fixate the visual competitor than to fixate either of the distractor objects. Moreover, this effect was not modulated by the visual similarity between the referent and competitor pictures, independently estimated in a visual similarity rating task. Because the name of the visual competitor did not overlap with the phonetic input, eye movements reflected word-object matching at the level of lexically activated perceptual features and not merely at the level of preactivated sound forms
Effects of prosodically modulated sub-phonetic variation on lexical competition
Eye movements were monitored as participants followed spoken instructions to manipulate one of four objects pictured on a computer screen. Target words occurred in utterance-medial (e.g., Put the cap next to the square) or utterance-final position (e.g., Now click on the cap). Displays consisted of the target picture (e.g., a cap), a monosyllabic competitor picture (e.g., a cat), a polysyllabic competitor picture (e.g., a captain) and a distractor (e.g., a beaker). The relative proportion of fixations to the two types of competitor pictures changed as a function of the position of the target word in the utterance, demonstrating that lexical competition is modulated by prosodically conditioned phonetic variation
An optical lattice on an atom chip
Optical dipole traps and atom chips are two very powerful tools for the
quantum manipulation of neutral atoms. We demonstrate that both methods can be
combined by creating an optical lattice potential on an atom chip. A
red-detuned laser beam is retro-reflected using the atom chip surface as a
high-quality mirror, generating a vertical array of purely optical oblate
traps. We load thermal atoms from the chip into the lattice and observe cooling
into the two-dimensional regime where the thermal energy is smaller than a
quantum of transverse excitation. Using a chip-generated Bose-Einstein
condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure
A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism
We present a two particle model to explain the mechanism that stabilizes a
bunch of positively charged ions in an "ion trap resonator" [Pedersen etal,
Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two
ions into two mappings for the free motion in different parts of the trap and
one for a compressing momentum kick. The ions' interaction is modelled by a
time delay, which then changes the balance between adjacent momentum kicks.
Through these mappings we identify the microscopic process that is responsible
for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
Scaling property of the critical hopping parameters for the Bose-Hubbard model
Recently precise results for the boundary between the Mott insulator phase
and the superfluid phase of the homogeneous Bose-Hubbard model have become
available for arbitrary integer filling factor g and any lattice dimension d >
1. We use these data for demonstrating that the critical hopping parameters
obey a scaling relationship which allows one to map results for different g
onto each other. Unexpectedly, the mean-field result captures the dependence of
the exact critical parameters on the filling factor almost fully. We also
present an approximation formula which describes the critical parameters for d
> 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ
Entropies of the EEG: The effects of general anaesthesia
The aim of this paper was to compare the performance of different entropy estimators when applied to EEG data taken from patients during routine induction of general anesthesia. The question then arose as to how and why different EEG patterns could affect the different estimators. Therefore we also compared how the different entropy estimators responded to artificially generated signals with predetermined, known, characteristics. This was done by applying the entropy algorithms to pseudoEEG data:
(1) computer-generated using a second-order autoregressive (AR2) model,
(2) computer-generated white noise added to step signals simulating blink and eyemovement artifacts and,
(3) seeing the effect of exogenous (computer-generated) sine-wave oscillations added to the actual clinically-derived EEG data set from patients undergoing induction of anesthesia
Quantum phase transition of condensed bosons in optical lattices
In this paper we study the superfluid-Mott-insulator phase transition of
ultracold dilute gas of bosonic atoms in an optical lattice by means of Green
function method and Bogliubov transformation as well. The superfluid-
Mott-insulator phase transition condition is determined by the energy-band
structure with an obvious interpretation of the transition mechanism. Moreover
the superfluid phase is explained explicitly from the energy spectrum derived
in terms of Bogliubov approach.Comment: 13 pages, 1 figure
Forecasting in the light of Big Data
Predicting the future state of a system has always been a natural motivation
for science and practical applications. Such a topic, beyond its obvious
technical and societal relevance, is also interesting from a conceptual point
of view. This owes to the fact that forecasting lends itself to two equally
radical, yet opposite methodologies. A reductionist one, based on the first
principles, and the naive inductivist one, based only on data. This latter view
has recently gained some attention in response to the availability of
unprecedented amounts of data and increasingly sophisticated algorithmic
analytic techniques. The purpose of this note is to assess critically the role
of big data in reshaping the key aspects of forecasting and in particular the
claim that bigger data leads to better predictions. Drawing on the
representative example of weather forecasts we argue that this is not generally
the case. We conclude by suggesting that a clever and context-dependent
compromise between modelling and quantitative analysis stands out as the best
forecasting strategy, as anticipated nearly a century ago by Richardson and von
Neumann
Second harmonic generating (SHG) nanoprobes for in vivo imaging
Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues
Conduction of Ultracold Fermions Through a Mesoscopic Channel
In a mesoscopic conductor electric resistance is detected even if the device
is defect-free. We engineer and study a cold-atom analog of a mesoscopic
conductor. It consists of a narrow channel connecting two macroscopic
reservoirs of fermions that can be switched from ballistic to diffusive. We
induce a current through the channel and find ohmic conduction, even for a
ballistic channel. An analysis of in-situ density distributions shows that in
the ballistic case the chemical potential drop occurs at the entrance and exit
of the channel, revealing the presence of contact resistance. In contrast, a
diffusive channel with disorder displays a chemical potential drop spread over
the whole channel. Our approach opens the way towards quantum simulation of
mesoscopic devices with quantum gases
- âŠ