35 research outputs found

    Adaptive Kalman Filter for Navigation Sensor Fusion

    Get PDF

    Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage

    Get PDF
    This paper investigates the windowing design and performance assessment for mitigation of spectral leakage. A pretreatment method to reduce the spectral leakage is developed. In addition to selecting appropriate window functions, the Welch method is introduced. Windowing is implemented by multiplying the input signal with a windowing function. The periodogram technique based on Welch method is capable of providing good resolution if data length samples are selected optimally. Windowing amplitude modulates the input signal so that the spectral leakage is evened out. Thus, windowing reduces the amplitude of the samples at the beginning and end of the window, altering leakage. The influence of various window functions on the Fourier transform spectrum of the signals was discussed, and the characteristics and functions of various window functions were explained. In addition, we compared the differences in the influence of different data lengths on spectral resolution and noise levels caused by the traditional power spectrum estimation and various window-function-based Welch power spectrum estimations

    Navigation Performance Enhancement Using IMM Filtering for Time Varying Satellite Signal Quality

    Get PDF
    A novel scheme using fuzzy logic based interacting multiple model (IMM) unscented Kalman filter (UKF) is employed in which the Fuzzy Logic Adaptive System (FLAS) is utilized to address uncertainty of measurement noise, especially for the outlier types of multipath errors for the Global Positioning System (GPS) navigation processing. Multipath is known to be one of the dominant error sources, and multipath mitigation is crucial for improvement of the positioning accuracy. It is not an easy task to establish precise statistical characteristics of measurement noise in practical engineering applications. Based on the filter structural adaptation, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the GPS navigation processing for time varying satellite signal quality. The uncertainty of the noise can be described by a set of switching models using the multiple model estimation. An UKF employs a set of sigma points by deterministic sampling, which avoids the error caused by linearization as in an extended Kalman filter (EKF). For enhancing further system flexibility, the fuzzy logic system is introduced. The use of IMM with FLAS enables tuning of appropriate values for the measurement noise covariance so as to obtain improved estimation accuracy. Performance assessment will be carried out to show the effectiveness of the proposed approach for positioning improvement in GPS navigation processing

    Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation

    Get PDF
    Accurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular. The unscented Kalman filter (UKF), which uses a deterministic sampling approach to capture the mean and covariance estimates with a minimal set of sample points, is able to achieve at least the second order accuracy without Jacobians’ computation involved. In this paper, the UKF is applied to the rigid body motion and shape dynamics to estimate feature points on moving objects. The performance evaluation is carried out through the numerical study. The results show that UKF demonstrates substantial improvement in accuracy estimation for implementing the estimation of motion and planar surface parameters of a single camera

    Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation

    No full text
    Accurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular. The unscented Kalman filter (UKF), which uses a deterministic sampling approach to capture the mean and covariance estimates with a minimal set of sample points, is able to achieve at least the second order accuracy without Jacobians’ computation involved. In this paper, the UKF is applied to the rigid body motion and shape dynamics to estimate feature points on moving objects. The performance evaluation is carried out through the numerical study. The results show that UKF demonstrates substantial improvement in accuracy estimation for implementing the estimation of motion and planar surface parameters of a single camera

    Efficient DOP Calculation for GPS with and without Altimeter Aiding

    No full text

    GPS Navigation Solutions by Analogue Neural Network Least-Squares Processors

    No full text

    Outlier Resistance Estimator for GPS Positioning – the Neural Network Approach

    No full text
    corecore