7 research outputs found
Non-Linear Relativity in Position Space
We propose two methods for obtaining the dual of non-linear relativity as
previously formulated in momentum space. In the first we allow for the (dual)
position space to acquire a non-linear representation of the Lorentz group
independently of the chosen representation in momentum space. This requires a
non-linear definition for the invariant contraction between momentum and
position spaces. The second approach, instead, respects the linearity of the
invariant contraction. This fully fixes the dual of momentum space and dictates
a set of energy-dependent space-time Lorentz transformations. We discuss a
variety of physical implications that would distinguish these two strategies.
We also show how they point to two rather distinct formulations of theories of
gravity with an invariant energy and/or length scale.Comment: 7 pages, revised versio
Chiral Supergravitons Interacting with a 0-Brane N-Extended NSR Super-Virasoro Group
We continue the development of the actions, S_{AFF}, by examining the cases
where there are N fermionic degrees of freedom associated with a 0-brane. These
actions correspond to the interaction of the N-extended super Virasoro algebra
with the supergraviton and the associated SO(N) gauge field that accompanies
the supermultiplet. The superfield formalism is used throughout so that
supersymmetry is explicit.Comment: PACS: 04.65.+e, 11.15.-q, 11.25.-w, 12.60.
Bouncing Universes with Varying Constants
We investigate the behaviour of exact closed bouncing Friedmann universes in
theories with varying constants. We show that the simplest BSBM varying-alpha
theory leads to a bouncing universe. The value of alpha increases
monotonically, remaining approximately constant during most of each cycle, but
increasing significantly around each bounce. When dissipation is introduced we
show that in each new cycle the universe expands for longer and to a larger
size. We find a similar effect for closed bouncing universes in Brans-Dicke
theory, where also varies monotonically in time from cycle to cycle.
Similar behaviour occurs also in varying speed of light theories
Large Scale Searches for Brown Dwarfs and Free-Floating Planets
Searches of large scale surveys have resulted in the discovery of over 1000
brown dwarfs in the Solar neighbourhood. In this chapter we review the progress
in finding brown dwarfs in large datasets, highlighting the key science goals,
and summarising the surveys that have contributed most significantly to the
current sample.Comment: Accepted to appear in the Handbook of Exoplanets (Springer); Editors:
Hans J. Deeg & Juan Antonio Belmont
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform.
Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak