4 research outputs found

    Multidimensional Disadvantages of a Gluten-Free Diet in Celiac Disease: A Narrative Review

    No full text
    A gluten-free diet is the mainstay method of treatment and the prevention of celiac disease complications. However, an inadequately balanced gluten-free diet can increase the risk of obesity, negatively affect glucose and lipid metabolism, and increase the risk of the metabolic syndrome. Therefore, an adequate nutritional counselling is necessary for patients diagnosed with celiac disease in order to prevent and treat the components of the metabolic syndrome

    Iron Deficiency Anemia in Inflammatory Bowel Diseases—A Narrative Review

    No full text
    Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. IBD has been associated with numerous symptoms and complications, with the most common being iron deficiency anemia (IDA). Iron deficiency in IBD is caused by inadequate intake, malabsorption (including duodenal involvement and surgical removal), and chronic blood loss by mucosal ulcerations. Therefore, an appropriate diet should be enforced. Iron deficiency and iron supplementation have been associated with alterations to gut microbiota. IBD-associated anemia, in particular iron deficiency anemia, is associated with a significant decrease in quality of life and with clinical symptoms such as chronic fatigue, headaches and dizziness, reduced exercise tolerance, pale skin, nails, conjunctiva, and fainting. However, despite these numerous adverse symptoms, IDA remains undertreated. The European Crohn’s and Colitis Organisation (ECCO) guidelines state that patients should be monitored for anemia. Adequate treatment, whether oral or intravenous, should be implemented while taking into consideration C-reactive protein values (CRP), hemoglobin levels, and therapeutic response. It should be stressed that every case of anemia in IBD patients should be treated. Intravenous iron formulations, which are more superior compared to the oral form, should be used. There is a need to increase awareness and implementation of international guidelines on iron supplementation in patients with IBD

    Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing

    No full text
    It is crucial to consider the importance of the microbiome and the gut–lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients’ cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota’s ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery

    Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing

    No full text
    It is crucial to consider the importance of the microbiome and the gut–lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients’ cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p p Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota’s ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery
    corecore