5 research outputs found

    Ellipticine and benzo(a)pyrene increase their own metabolic activation via modulation of expression and enzymatic activity of cytochromes P450 1A1 and 1A2

    Get PDF
    Two compounds known to covalently bind to DNA after their activation with cytochromes P450 (CYPs), carcinogenic benzo(a)pyrene (BaP) and an antineoplastic agent ellipticine, were investigated for their potential to induce CYP and NADPH:CYP reductase (POR) enzymes in rodent livers, the main target organ for DNA adduct formation. Two animal models were used in the study: (i) rats as animals mimicking the fate of ellipticine in humans and (ii) mice, especially wild-type (WT) and hepatic POR null (HRN™) mouse lines. Ellipticine and BaP induce expression of CYP1A enzymes in livers of experimental models, which leads to increase in their enzymatic activity. In addition, both compounds are capable of generating DNA adducts, predominantly in livers of studied organisms. As determined by 32P postlabelling analysis, levels of ellipticine-derived DNA adducts formed in vivo in the livers of HRN™ mice were reduced (by up to 65%) relative to levels in WT mice, indicating that POR mediated CYP enzyme activity is important for the activation of ellipticine. In contrast to these results, 6.4 fold higher DNA binding of BaP was observed in the livers of HRN™ mice than in WT mice. This finding suggests a detoxication role of CYP1A in BaP metabolism in vivo. In in vitro experiments, DNA adduct formation in calf thymus DNA was up to 25 fold higher in incubations of ellipticine or BaP with microsomes from pretreated animals than with controls. This stimulation effect was attributed to induction of CYP1A1/2 enzymes, which are responsible for oxidative activation of both compounds to the metabolites generating major DNA adducts in vitro. Taken together, these results demonstrate that by inducing CYP1A1/2, ellipticine and BaP modulate their own enzymatic metabolic activation and detoxication, thereby modulating their either pharmacological (ellipticine) and/or genotoxic potential (both compounds)

    Analysis of benzo[a]pyrene metabolites formed by rat hepatic microsomes using high pressure liquid chromatography: optimization of the method

    Get PDF
    A simple and sensitive method was developed to separate the carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), and six of its oxidation metabolites generated by rat hepatic microsomes enriched with cytochrome P450 (CYP) 1A1, by high pressure liquid chromatography (HPLC). The HPLC method, using an acetonitrile/water gradient as mobile phase and UV detection, provided appropriate separation and detection of both mono- and di-hydroxylated metabolites of BaP as well as BaP diones formed by rat hepatic microsomes and the parental BaP. In this enzymatic system, 3-hydroxy BaP, 9-hydroxy BaP, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-9,10-dihydrodiol and BaP-dione were generated. Among them the mono-hydroxylated BaP metabolite, 3-hydroxy BaP followed by di-hydroxylated BaP products, BaP-7,8-dihydrodiol and BaP-9,10-dihydrodiol, predominated, while BaP-dione was a minor metabolite. This HPLC method will be useful for further defining the roles of the CYP1A1 enzyme with both in vitro and in vivo models in understanding its real role in activation and detoxification of BaP
    corecore