1,590 research outputs found

    Tunneling into the normal state of Pr(2-x)CexCuO4

    Full text link
    The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than Tc for the underdoped region and it follows Tc on the overdoped side. This behavior suggests finite pairing amplitude above Tc on the underdoped side

    Role of oxygen in the electron-doped superconducting cuprates

    Full text link
    We report on resistivity and Hall measurements in thin films of the electron-doped superconducting cuprate Pr2−x_{2-x}Cex_{x}CuO4±δ_{4\pm\delta}. Comparisons between x = 0.17 samples subjected to either ion-irradiation or oxygenation demonstrate that changing the oxygen content has two separable effects: 1) a doping effect similar to that of cerium, and 2) a disorder effect. These results are consistent with prior speculations that apical oxygen removal is necessary to achieve superconductivity in this compound.Comment: 5 pages, 5 figure

    On the resistivity at low temperatures in electron-doped cuprate superconductors

    Full text link
    We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the underdoped side. The sheet resistance increases with increasing oxygen content whereas the superconducting transition temperature is steadily decreasing down to zero. Upon applying various magnetic fields to suppress superconductivity we found that the sheet resistance increases when the temperature is lowered. It saturates at very low temperatures. These results, along with the magnetoresistance, cannot be described in the context of zero temperature two dimensional superconductor-to-insulator transition nor as a simple Kondo effect due to scattering off spins in the copper-oxide planes. We conjecture that due to the proximity to an antiferromagnetic phase magnetic droplets are induced. This results in negative magnetoresistance and in an upturn in the resistivity.Comment: Accepted in Phys. Rev.

    Evidence for a quantum phase transition in the electron-doped cuprate Pr2-xCexCuO4+d from Hall and resistivity measurements

    Full text link
    The doping and temperature dependence of the Hall coefficient, RH, and ab-plane resistivity in the normal state down to 350mK is reported for oriented films of the electron-doped high-Tc superconductor Pr2-xCexCuO4+d. The doping dependence of b (r=r0+AT^b) and R_sub_H (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.Comment: 11 pages 4 figures Phys. Rev. Lett. 92, 167001 (2004

    Heterogeneous Bayesian Decentralized Data Fusion: An Empirical Study

    Full text link
    In multi-robot applications, inference over large state spaces can often be divided into smaller overlapping sub-problems that can then be collaboratively solved in parallel over `separate' subsets of states. To this end, the factor graph decentralized data fusion (FG-DDF) framework was developed to analyze and exploit conditional independence in heterogeneous Bayesian decentralized fusion problems, in which robots update and fuse pdfs over different locally overlapping random states. This allows robots to efficiently use smaller probabilistic models and sparse message passing to accurately and scalably fuse relevant local parts of a larger global joint state pdf, while accounting for data dependencies between robots. Whereas prior work required limiting assumptions about network connectivity and model linearity, this paper relaxes these to empirically explore the applicability and robustness of FG-DDF in more general settings. We develop a new heterogeneous fusion rule which generalizes the homogeneous covariance intersection algorithm, and test it in multi-robot tracking and localization scenarios with non-linear motion/observation models under communication dropout. Simulation and linear hardware experiments show that, in practice, the FG-DDF continues to provide consistent filtered estimates under these more practical operating conditions, while reducing computation and communication costs by more than 95%, thus enabling the design of scalable real-world multi-robot systems.Comment: 7 pages, 2 figures, submitted to IEEE Conference on Robotics and Automation (ICRA 2023

    Infrared Signature of the Superconducting State in Pr(2-x)Ce(x)CuO(4)

    Full text link
    We measured the far infrared reflectivity of two superconducting Pr(2-x)Ce(x)CuO(4) films above and below Tc. The reflectivity in the superconducting state increases and the optical conductivity drops at low energies, in agreement with the opening of a (possibly) anisotropic superconducting gap. The maximum energy of the gap scales roughly with Tc as 2 Delta_{max} / kB Tc ~ 4.7. We determined absolute values of the penetration depth at 5 K as lambda_{ab} = (3300 +/- 700) A for x = 0.15 and lambda_{ab} = (2000 +/- 300) A for x = 0.17. A spectral weight analysis shows that the Ferrell-Glover-Tinkham sum rule is satisfied at conventional low energy scales \~ 4 Delta_{max}.Comment: 4 pages, 4 figure

    Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter

    Full text link
    Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy order parameter. The subdominant (is or idxy) component manifests itself in a splitting of the zero bias conductance peak and the appearance of subgap structures. The splitting is seen in the overdoped samples, increases systematically with doping, and is found to be an inherent property of the overdoped films. It was observed in both local tunnel junctions, using scanning tunneling microscopy (STM), and in macroscopic planar junctions, for films prepared by either RF sputtering or laser ablation. The STM measurements exhibit fairly uniform splitting size in [110] oriented areas on the order of 10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and V-shaped gaps were also observed, with good correspondence to the local faceting, a manifestation of the dominant d-wave order parameter
    • …
    corecore