45 research outputs found

    BRCA1: linking HOX to breast cancer suppression

    Get PDF
    Homeobox (HOX) genes play key roles in embryogenesis and tissue differentiation. Recently, a number of groups have reported altered HOX gene expression in breast cancer. However, the mechanism of HOX gene regulation and the search for direct targets of its transcriptional regulatory function have been minimally fruitful. Recently, Gilbert and colleagues reported that HOXA9 restrains breast cancer progression by upregulation of BRCA1, a tumor suppressor. This finding raises our hope that more, rather elusive targets of HOX genes important in tumor progression or suppression will be found in the future

    Endocrine disruptors and spontaneous premature labor: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premature labor is a poorly understood condition. Estrogen is thought to play a key role and therefore the labor process may be affected by endocrine disruptors. We sought to determine whether or not an environmental toxicant, DDE, or dietary derived endocrine disruptors, daidzein and genistein, are associated with spontaneous preterm labor.</p> <p>Methods</p> <p>Cases were defined as primiparous patients having a preterm delivery at or before 35 weeks following the spontaneous onset of labor. Controls were defined as primiparous women who delivered on the same day as the cases but at term gestation.</p> <p>Over approximately 1 year, 26 cases and 52 controls were recruited. Subjects agreed to have blood tests on day one postpartum for DDE and for the phytoestrogens genistein and daidzein.</p> <p>Results</p> <p>The mean concentration of DDE was similar in the case and control groups: 4.29 vs 4.32 ng/g lipid p = .85. In the case group, 13/26 had detectable levels of daidzein (range 0.20 – 1.56 ng/ml) compared to 25/52 controls (range 0.21 – 3.26 ng/ml). The mean concentration of daidzein was similar in cases compared to controls: 0.30 vs .34 ng/ml p = 0.91. Of the case group,14/26 had detectable levels of genistein (range 0.20 – 2.19 ng/ml) compared to 32/52 controls (range 0.21 – 2.55 ng/ml). The mean concentration of genistein was similar in cases compared to controls: 0.39 vs 0.31 ng/ml, p = 0.61.</p> <p>Conclusion</p> <p>The serum levels of DDE in this population were found to be low.</p> <p>There appears to be no relationship between serum concentrations of DDE, daidzein, and genistein and spontaneous preterm labor in our population. The inability to identify an effect may be related to the comparatively low concentrations of DDE in our population and the rapid and variable reduction of phytoestrogens from women in labor.</p

    HoxA-11 and FOXO1A Cooperate to Regulate Decidual Prolactin Expression: Towards Inferring the Core Transcriptional Regulators of Decidual Genes

    Get PDF
    During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs) leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (−395 to −148 relative to the PRL transcriptional start site) of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization

    A scoping review and thematic analysis of social and behavioural research among HIV-serodiscordant couples in high-income settings.

    Get PDF
    CAPRISA, 2015.Abstract available in pdf

    Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling

    No full text
    Tryptophan 2,3-dioxygenase (TDO) is expressed in endometrium and catabolizes tryptophan, a precursor in the biosynthesis of serotonin. Tryptophan metabolism is an important mechanism for regulation of serotonin levels. Preimplantation mouse embryos are known to express serotonin receptors, specifically the 5-HT1D and 5-HT7 serotonin receptor subtypes. Here we demonstrate that Hoxa10 regulates endometrial TDO expression and improves embryo viability through increased serotonin production. Transfection of pcDNA-Hoxa10 to the murine uterus increased total TDO expression. In vitro, epithelial cell TDO expression was decreased after transfection with Hoxa10. Decreased glandular TDO in response to HOXA10 may augment serotonin production by increasing tryptophan availability. Conversely, stromal TDO expression increased with constitutive Hoxa10 expression. In mice, epithelial serotonin was increased in response to constitutive expression of Hoxa10. Embryo quality was impaired after treatment with Hoxa10 antisense. Blockade of serotonin receptors 1D and 7 also resulted in impaired embryo development, indicating an essential role for Hoxa10 induction of TDO and subsequent serotonin production in embryo development. Transfection of pcDNA-TDO also decreased the number of T cells in the endometrial stroma. We have shown a novel mechanism by which HOXA10 regulates endometrial TDO expression. In the endometrial stroma, HOXA10 increases TDO mRNA, which may increase tryptophan catabolism, allowing for immune tolerance at the time of embryo implantation. In endometrial glands, HOXA10 decreases TDO mRNA leading to increased serotonin that in turn acts to promote normal embryo development
    corecore