8 research outputs found

    Sex Differences in Prehospital Identification of Large Vessel Occlusion in Patients with Suspected Stroke

    Get PDF
    BACKGROUND: Differences in clinical presentation of acute ischemic stroke between men and women may affect prehospital identification of anterior circulation large vessel occlusion (aLVO). We assessed sex differences in diagnostic performance of 8 prehospital scales to detect aLVO. METHODS: We analyzed pooled individual patient data from 2 prospective cohort studies (LPSS [Leiden Prehospital Stroke Study] and PRESTO [Prehospital Triage of Patients With Suspected Stroke Study]) conducted in the Netherlands between 2018 and 2019, including consecutive patients ≥18 years suspected of acute stroke who presented within 6 hours after symptom onset. Ambulance paramedics assessed clinical items from 8 prehospital aLVO detection scales: Los Angeles Motor Scale, Rapid Arterial Occlusion Evaluation, Cincinnati Stroke Triage Assessment Tool, Cincinnati Prehospital Stroke Scale, Prehospital Acute Stroke Severity, gaze-face-arm-speech-time, Conveniently Grasped Field Assessment Stroke Triage, and Face-Arm-Speech-Time Plus Severe Arm or Leg Motor Deficit. We assessed the diagnostic performance of these scales for identifying aLVO at prespecified cut points for men and women.RESULTS: Of 2358 patients with suspected stroke (median age, 73 years; 47% women), 231 (10%) had aLVO (100/1114 [9%] women and 131/1244 [11%] men). The area under the curve of the scales ranged from 0.70 (95% CI, 0.65-0.75) to 0.77 (95% CI, 0.73-0.82) in women versus 0.69 (95% CI, 0.64-0.73) to 0.75 (95% CI, 0.71-0.79) in men. Positive predictive values ranged from 0.23 (95% CI, 0.20-0.27) to 0.29 (95% CI, 0.26-0.31) in women versus 0.29 (95% CI, 0.24-0.33) to 0.37 (95% CI, 0.32-0.43) in men. Negative predictive values were similar (0.95 [95% CI, 0.94-0.96] to 0.98 [95% CI, 0.97-0.98] in women versus 0.94 [95% CI, 0.93-0.95] to 0.96 [95% CI, 0.94-0.97] in men). Sensitivity of the scales was slightly higher in women than in men (0.53 [95% CI, 0.43-0.63] to 0.76 [95% CI, 0.68-0.84] versus 0.49 [95% CI, 0.40-0.57] to 0.63 [95% CI, 0.55-0.73]), whereas specificity was lower (0.79 [95% CI, 0.76-0.81] to 0.87 [95% CI, 0.84-0.89] versus 0.82 [95% CI, 0.79-0.84] to 0.90 [95% CI, 0.88-0.91]). Rapid arterial occlusion evaluation showed the highest positive predictive values in both sexes (0.29 in women and 0.37 in men), reflecting the different event rates. CONCLUSIONS: aLVO scales show similar diagnostic performance in both sexes. The rapid arterial occlusion evaluation scale may help optimize prehospital transport decision-making in men as well as in women with suspected stroke.</p

    Cost-effectiveness of CT perfusion for the detection of large vessel occlusion acute ischemic stroke followed by endovascular treatment:a model-based health economic evaluation study

    Get PDF
    Objectives:CT perfusion (CTP) has been suggested to increase the rate of large vessel occlusion (LVO) detection in patients suspected of acute ischemic stroke (AIS) if used in addition to a standard diagnostic imaging regime of CT angiography (CTA) and non-contrast CT (NCCT). The aim of this study was to estimate the costs and health effects of additional CTP for endovascular treatment (EVT)–eligible occlusion detection using model-based analyses. Methods: In this Dutch, nationwide retrospective cohort study with model-based health economic evaluation, data from 701 EVT-treated patients with available CTP results were included (January 2018–March 2022; trialregister.nl:NL7974). We compared a cohort undergoing NCCT, CTA, and CTP (NCCT + CTA + CTP) with a generated counterfactual where NCCT and CTA (NCCT + CTA) was used for LVO detection. The NCCT + CTA strategy was simulated using diagnostic accuracy values and EVT effects from the literature. A Markov model was used to simulate 10-year follow-up. We adopted a healthcare payer perspective for costs in euros and health gains in quality-adjusted life years (QALYs). The primary outcome was the net monetary benefit (NMB) at a willingness to pay of €80,000; secondary outcomes were the difference between LVO detection strategies in QALYs (ΔQALY) and costs (ΔCosts) per LVO patient. Results: We included 701 patients (median age: 72, IQR: [62–81]) years). Per LVO patient, CTP-based occlusion detection resulted in cost savings (ΔCosts median: € − 2671, IQR: [€ − 4721; € − 731]), a health gain (ΔQALY median: 0.073, IQR: [0.044; 0.104]), and a positive NMB (median: €8436, IQR: [5565; 11,876]) per LVO patient. Conclusion: CTP-based screening of suspected stroke patients for an endovascular treatment eligible large vessel occlusion was cost-effective. Clinical relevance statement.: Although CTP-based patient selection for endovascular treatment has been recently suggested to result in worse patient outcomes after ischemic stroke, an alternative CTP-based screening for endovascular treatable occlusions is cost-effective. Key Points: • Using CT perfusion to detect an endovascular treatment-eligible occlusions resulted in a health gain and cost savings during 10 years of follow-up. • Depending on the screening costs related to the number of patients needed to image with CT perfusion, cost savings could be considerable (median: € − 3857, IQR: [€ − 5907; € − 1916] per patient). • As the gain in quality adjusted life years was most affected by the sensitivity of CT perfusion-based occlusion detection, additional studies for the diagnostic accuracy of CT perfusion for occlusion detection are required.</p

    Impact of Intracranial Volume and Brain Volume on the Prognostic Value of Computed Tomography Perfusion Core Volume in Acute Ischemic Stroke

    Get PDF
    Background: Computed tomography perfusion (CTP)-estimated core volume is associated with functional outcomes in acute ischemic stroke. This relationship might differ among patients, depending on brain volume. Materials and Methods: We retrospectively included patients from the MR CLEAN Registry. Cerebrospinal fluid (CSF) and intracranial volume (ICV) were automatically segmented on NCCT. We defined the proportion of the ICV and total brain volume (TBV) affected by the ischemic core as ICVcore and TBVcore. Associations between the core volume, ICVcore, TBVcore, and functional outcome are reported per interquartile range (IQR). We calculated the area under the curve (AUC) to assess diagnostic accuracy.Results: In 200 patients, the median core volume was 13 (5–41) mL. Median ICV and TBV were 1377 (1283–1456) mL and 1108 (1020–1197) mL. Median ICVcore and TBVcore were 0.9 (0.4–2.8)% and 1.7 (0.5–3.6)%. Core volume (acOR per IQR 0.48 [95%CI 0.33–0.69]), ICVcore (acOR per IQR 0.50 [95%CI 0.35–0.69]), and TBVcore (acOR per IQR 0.41 95%CI 0.33–0.67]) showed a lower likelihood of achieving improved functional outcomes after 90 days. The AUC was 0.80 for the prediction of functional independence at 90 days for the CTP-estimated core volume, the ICVcore, and the TBVcore. Conclusion:Correcting the CTP-estimated core volume for the intracranial or total brain volume did not improve the association with functional outcomes in patients who underwent EVT.</p

    Comparison of Prehospital Assessment by Paramedics and In-Hospital Assessment by Physicians in Suspected Stroke Patients:Results From 2 Prospective Cohort Studies

    Get PDF
    BACKGROUND: It is unknown if ambulance paramedics adequately assess neurological deficits used for prehospital stroke scales to detect anterior large-vessel occlusions. We aimed to compare prehospital assessment of these stroke-related deficits by paramedics with in-hospital assessment by physicians. METHODS: We used data from 2 prospective cohort studies: the LPSS (Leiden Prehospital Stroke Study) and PRESTO study (Prehospital Triage of Patients With Suspected Stroke). In both studies, paramedics scored 9 neurological deficits in stroke code patients in the field. Trained physicians scored the National Institutes of Health Stroke Scale (NIHSS) at hospital presentation. Patients with transient ischemic attack were excluded because of the transient nature of symptoms. Spearman rank correlation coefficient (rs) was used to assess correlation between the total prehospital assessment score, defined as the sum of all prehospital items, and the total NIHSS score. Correlation, sensitivity and specificity were calculated for each prehospital item with the corresponding NIHSS item as reference. RESULTS: We included 2850 stroke code patients. Of these, 1528 had ischemic stroke, 243 intracranial hemorrhage, and 1079 stroke mimics. Correlation between the total prehospital assessment score and NIHSS score was strong (rs=0.70 [95% CI, 0.68-0.72]). Concerning individual items, prehospital assessment of arm (rs=0.68) and leg (rs=0.64) motor function correlated strongest with corresponding NIHSS items, and had highest sensitivity (arm 95%, leg 93%) and moderate specificity (arm 71%, leg 70%). Neglect (rs=0.31), abnormal speech (rs=0.50), and gaze deviation (rs=0.51) had weakest correlations. Neglect and gaze deviation had lowest sensitivity (52% and 66%) but high specificity (84% and 89%), while abnormal speech had high sensitivity (85%) but lowest specificity (65%). CONCLUSIONS: The overall prehospital assessment of stroke code patients correlates strongly with in-hospital assessment. Prehospital assessment of neglect, abnormal speech, and gaze deviation differed most from in-hospital assessment. Focused training on these deficits may improve prehospital triage.</p

    Association between computed tomography perfusion and the effect of intravenous alteplase prior to endovascular treatment in acute ischemic stroke

    Get PDF
    Purpose: Intravenous alteplase (IVT) prior to endovascular treatment (EVT) is neither superior nor noninferior to EVT alone in acute ischemic stroke patients. We aim to assess whether the effect of IVT prior to EVT differs according to CT perfusion (CTP)–based imaging parameters. Methods: In this retrospective post hoc analysis, we included patients from the MR CLEAN-NO IV with available CTP data. CTP data were processed using syngo.via (version VB40). We performed multivariable logistic regression to obtain the effect size estimates (adjusted common odds ratio a[c]OR) on 90-day functional outcome (modified Rankin Scale [mRS]) and functional independence (mRS 0-2) for CTP parameters with two-way multiplicative interaction terms between IVT administration and the studied parameters. Results: In 227 patients, median CTP-estimated core volume was 13 (IQR 5–35) mL. The treatment effect of IVT prior to EVT on outcome was not altered by CTP-estimated ischemic core volume, penumbral volume, mismatch ratio, and presence of a target mismatch profile. None of the CTP parameters was significantly associated with functional outcome after adjusting for confounders. Conclusion: In directly admitted patients with limited CTP-estimated ischemic core volumes who presented within 4.5 h after symptom onset, CTP parameters did not statistically significantly alter the treatment effect of IVT prior to EVT. Further studies are needed to confirm these results in patients with larger core volumes and more unfavorable baseline perfusion profiles on CTP imaging

    Cost-effectiveness of CT perfusion for patients with acute ischemic stroke (CLEOPATRA)-Study protocol for a healthcare evaluation study

    No full text
    Introduction: Computed tomography perfusion (CTP) is variably considered to assess eligibility for endovascular thrombectomy (EVT) in acute ischemic (AIS) stroke patients. Although CTP is recommended for patient selection in later (6–24 h) time window, it is currently not recommended in the earlier (0–6 h) time window and the costs and health effects of including CTP for EVT selection remain unknown. We aim to estimate the costs and health effects of using CTP for EVT selection in AIS patients compared to conventional selection. Patients and methods: CLEOPATRA is a healthcare evaluation study using clinical and imaging data from multiple, prospective EVT trials and registries in both the earlier and later time windows. To study the long-term health and cost effects, we will construct a (“Markov”) health state transition model simulating the clinical outcome over a 5-year follow-up period for CTP-based and conventional selection for EVT. Clinical data acquired within the current study and estimates from the literature will be used as input for probabilities of events, costs, and Quality-Adjusted Life Years (QALYs) per modified Rankin Scale (mRS) subscore. Primary outcome for the cost-effectiveness analysis will be the Incremental Cost-Effectiveness Ratio (ICER) in terms of costs per QALY gained over the simulated follow-up period. Study outcomes: Outcome measures will be reported as cumulative values over a 5-year follow-up period. Discussion: This study will provide preliminary insight into costs and health effects of including CTP in the selection for EVT for AIS patients, presenting between 0 and 24 h after time last known well. The results may be used to develop recommendations and inform further implementation projects and studies

    Cost-effectiveness of CT perfusion for patients with acute ischemic stroke (CLEOPATRA)-Study protocol for a healthcare evaluation study

    Get PDF
    Introduction: Computed tomography perfusion (CTP) is variably considered to assess eligibility for endovascular thrombectomy (EVT) in acute ischemic (AIS) stroke patients. Although CTP is recommended for patient selection in later (6-24 h) time window, it is currently not recommended in the earlier (0-6 h) time window and the costs and health effects of including CTP for EVT selection remain unknown. We aim to estimate the costs and health effects of using CTP for EVT selection in AIS patients compared to conventional selection. Patients and methods: CLEOPATRA is a healthcare evaluation study using clinical and imaging data from multiple, prospective EVT trials and registries in both the earlier and later time windows. To study the long-term health and cost effects, we will construct a ("Markov") health state transition model simulating the clinical outcome over a 5-year follow-up period for CTP-based and conventional selection for EVT. Clinical data acquired within the current study and estimates from the literature will be used as input for probabilities of events, costs, and Quality-Adjusted Life Years (QALYs) per modified Rankin Scale (mRS) subscore. Primary outcome for the cost-effectiveness analysis will be the Incremental Cost-Effectiveness Ratio (ICER) in terms of costs per QALY gained over the simulated follow-up period. Study outcomes: Outcome measures will be reported as cumulative values over a 5-year follow-up period. Discussion: This study will provide preliminary insight into costs and health effects of including CTP in the selection for EVT for AIS patients, presenting between 0 and 24 h after time last known well. The results may be used to develop recommendations and inform further implementation projects and studies

    Cost-effectiveness of CT perfusion for the detection of large vessel occlusion acute ischemic stroke followed by endovascular treatment:a model-based health economic evaluation study

    No full text
    OBJECTIVES: CT perfusion (CTP) has been suggested to increase the rate of large vessel occlusion (LVO) detection in patients suspected of acute ischemic stroke (AIS) if used in addition to a standard diagnostic imaging regime of CT angiography (CTA) and non-contrast CT (NCCT). The aim of this study was to estimate the costs and health effects of additional CTP for endovascular treatment (EVT)-eligible occlusion detection using model-based analyses. METHODS: In this Dutch, nationwide retrospective cohort study with model-based health economic evaluation, data from 701 EVT-treated patients with available CTP results were included (January 2018-March 2022; trialregister.nl:NL7974). We compared a cohort undergoing NCCT, CTA, and CTP (NCCT?+?CTA?+?CTP) with a generated counterfactual where NCCT and CTA (NCCT?+?CTA) was used for LVO detection. The NCCT?+?CTA strategy was simulated using diagnostic accuracy values and EVT effects from the literature. A Markov model was used to simulate 10-year follow-up. We adopted a healthcare payer perspective for costs in euros and health gains in quality-adjusted life years (QALYs). The primary outcome was the net monetary benefit (NMB) at a willingness to pay of €80,000; secondary outcomes were the difference between LVO detection strategies in QALYs (?QALY) and costs (?Costs) per LVO patient. RESULTS: We included 701 patients (median age: 72, IQR: [62-81]) years). Per LVO patient, CTP-based occlusion detection resulted in cost savings (?Costs median: €?-?2671, IQR: [€?-?4721; €?-?731]), a health gain (?QALY median: 0.073, IQR: [0.044; 0.104]), and a positive NMB (median: €8436, IQR: [5565; 11,876]) per LVO patient. CONCLUSION: CTP-based screening of suspected stroke patients for an endovascular treatment eligible large vessel occlusion was cost-effective. CLINICAL RELEVANCE STATEMENT: Although CTP-based patient selection for endovascular treatment has been recently suggested to result in worse patient outcomes after ischemic stroke, an alternative CTP-based screening for endovascular treatable occlusions is cost-effective. KEY POINTS: • Using CT perfusion to detect an endovascular treatment-eligible occlusions resulted in a health gain and cost savings during 10 years of follow-up. • Depending on the screening costs related to the number of patients needed to image with CT perfusion, cost savings could be considerable (median: €?-?3857, IQR: [€?-?5907; €?-?1916] per patient). • As the gain in quality adjusted life years was most affected by the sensitivity of CT perfusion-based occlusion detection, additional studies for the diagnostic accuracy of CT perfusion for occlusion detection are required
    corecore