216 research outputs found
Internal podalic version of second twin: Improving feet identification using a simulation model.
Podalic version and breech extraction require high obstetrical expertise. Identifying fetal extremities is the first crucial step for trainees. When this skill is not polished enough, it increases the inter-twin delivery interval and can even jeopardize the whole manoeuver.
We present a model for simulating and training this specific skill, with obstetrical mannequin, and 3D printed hands and feet. Five feet and five hands (five rights and five lefts of each one) were printed in 3D after initial ultrasound acquisition of a near term fetus. Each foot and hand, was individually set in a condom filled with 100 cc of water and closed with a knot. A Sophie's Mum Birth Simulator Version 4.0 de MODEL-med was placed on the edge of the table. Each hand and foot was inserted into the pelvic mannequin. An evaluation of the students' skills using this model was performed. A significant reduction of the global mean to extract the first foot and all the feet was noticed at three month of interval.
This model is an option to train and assess a crucial skill for version and breech extraction
The NASA X-Ray Mission Concepts Study
The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from 2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report
Data analysis issues for allele-specific expression using Illumina's GoldenGate assay.
BACKGROUND: High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting application area for array-based technologies. In this paper, we explore several data sets which make use of Illumina's GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative expression measurements for alleles at approximately 1500 positions in the genome. RESULTS: We analyze data from a mixture experiment where genomic DNA samples from pairs of individuals of known genotypes are pooled to create allelic imbalances at varying levels for the majority of SNPs on the array. We observe that GoldenGate has less sensitivity at detecting subtle allelic imbalances (around 1.3 fold) compared to extreme imbalances, and note the benefit of applying local background correction to the data. Analysis of data from a dye-swap control experiment allowed us to quantify dye-bias, which can be reduced considerably by careful normalization. The need to filter the data before carrying out further downstream analysis to remove non-responding probes, which show either weak, or non-specific signal for each allele, was also demonstrated. Throughout this paper, we find that a linear model analysis of the data from each SNP is a flexible modelling strategy that allows for testing of allelic imbalances in each sample when replicate hybridizations are available. CONCLUSIONS: Our analysis shows that local background correction carried out by Illumina's software, together with quantile normalization of the red and green channels within each array, provides optimal performance in terms of false positive rates. In addition, we strongly encourage intensity-based filtering to remove SNPs which only measure non-specific signal. We anticipate that a similar analysis strategy will prove useful when quantifying ASE on Illumina's higher density Infinium BeadChips.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein
Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication
Angiogenic desmoplastic histopathological growth pattern as a prognostic marker of good outcome in patients with colorectal liver metastases
Abstract
Background In patients with resectable colorectal liver metastases (CRLM), distinct histopathological growth patterns
(HGPs) develop at the interface between the tumour and surrounding tissue. The desmoplastic (d) HGP is characterised by
angiogenesis and a peripheral fibrotic rim, whereas non-angiogenic HGPs co-opt endogenous sinusoidal hepatic vasculature.
Evidence from previous studies has suggested that patients with dHGP in their CRLM have improved prognosis as compared
to patients with non-desmoplastic HGPs. However, these studies were relatively small and applied arbitrary cut-off values
for the determination of the predominant HGP. We have now investigated the
Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia
Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses
Automatic Detection of Cyberbullying in Social Media Text
While social media offer great communication opportunities, they also
increase the vulnerability of young people to threatening situations online.
Recent studies report that cyberbullying constitutes a growing problem among
youngsters. Successful prevention depends on the adequate detection of
potentially harmful messages and the information overload on the Web requires
intelligent systems to identify potential risks automatically. The focus of
this paper is on automatic cyberbullying detection in social media text by
modelling posts written by bullies, victims, and bystanders of online bullying.
We describe the collection and fine-grained annotation of a training corpus for
English and Dutch and perform a series of binary classification experiments to
determine the feasibility of automatic cyberbullying detection. We make use of
linear support vector machines exploiting a rich feature set and investigate
which information sources contribute the most for this particular task.
Experiments on a holdout test set reveal promising results for the detection of
cyberbullying-related posts. After optimisation of the hyperparameters, the
classifier yields an F1-score of 64% and 61% for English and Dutch
respectively, and considerably outperforms baseline systems based on keywords
and word unigrams.Comment: 21 pages, 9 tables, under revie
The HIV Tat protein affects processing of ribosomal RNA precursor
<p>Abstract</p> <p>Background</p> <p>Inside the cell, the HIV Tat protein is mainly found in the nucleus and nucleolus. The nucleolus, the site of ribosome biogenesis, is a highly organized, non-membrane-bound sub-compartment where proteins with a high affinity for nucleolar components are found. While it is well known that Tat accumulates in the nucleolus via a specific nucleolar targeting sequence, its function in this compartment it still unknown.</p> <p>Results</p> <p>To clarify the significance of the Tat nucleolar localization, we induced the expression of the protein during oogenesis in <it>Drosophila melanogaster </it>strain transgenic for HIV-<it>tat </it>gene. Here we show that Tat localizes in the nucleoli of <it>Drosophila </it>oocyte nurse cells, where it specifically co-localizes with fibrillarin. Tat expression is accompanied by a significant decrease of cytoplasmic ribosomes, which is apparently related to an impairment of ribosomal rRNA precursor processing. Such an event is accounted for by the interaction of Tat with fibrillarin and U3 snoRNA, which are both required for pre-rRNA maturation.</p> <p>Conclusion</p> <p>Our data contribute to understanding the function of Tat in the nucleolus, where ribosomal RNA synthesis and cell cycle control take place. The impairment of nucleolar pre-rRNA maturation through the interaction of Tat with fibrillarin-U3snoRNA complex suggests a process by which the virus modulates host response, thus contributing to apoptosis and protein shut-off in HIV-uninfected cells.</p
- …