36 research outputs found

    Wildtype epidermal growth factor receptor (Egfr) is not required for daily locomotor or masking behavior in mice

    Get PDF
    BACKGROUND: Recent studies have implicated the epidermal growth factor receptor (EGFR) within the subparaventricular zone as being a major mediator of locomotor and masking behaviors in mice. The results were based on small cohorts of mice homozygous for the hypomorphic Egfr(wa2 )allele on a mixed, genetically uncontrolled background, and on intraventricular infusion of exogenous EGFR ligands. Subsequenlty, a larger study using the same genetically mixed background failed to replicate the original findings. Since both previous approaches were susceptible to experimental artifacts related to an uncontrolled genetic background, we analyzed the locomotor behaviors in Egfr(wa2 )mutant mice on genetically defined, congenic backgrounds. METHODS: Mice carrying the Egfr(wa2 )hypomorphic allele were bred to congenicity by backcrossing greater than ten generations onto C57BL/6J and 129S1/SvImJ genetic backgrounds. Homozygous Egfr(wa2 )mutant and wildtype littermates were evaluated for defects in locomotor and masking behaviors. RESULTS: Mice homozygous for Egfr(wa2 )showed normal daily locomotor activity and masking indistinguishable from wildtype littermates at two light intensities (200–300 lux and 400–500 lux). CONCLUSION: Our results demonstrate that reduced EGFR activity alone is insufficient to perturb locomotor and masking behaviors in mice. Our results also suggest that other uncontrolled genetic or environmental parameters confounded previous experiments linking EGFR activity to daily locomotor activity and provide a cautionary tale for genetically uncontrolled studies

    Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model

    Get PDF
    One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration

    Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia

    Get PDF
    Growth factor Neuregulin 1 (NRG1) plays an essential role in development and organization of the cerebral cortex. NRG1 and its receptors, ERBB3 and ERBB4, have been implicated in genetic susceptibility for schizophrenia. Disease symptoms include asociality and altered social interaction. To investigate the role of NRG1-ERBB signaling in social behavior, mice heterozygous for an Nrg1 null allele (Nrg1+/−), and mice with conditional ablation of Erbb3 or Erbb4 in the central nervous system, were evaluated for sociability and social novelty preference in a three-chambered choice task. Results showed that deficiencies in NRG1 or ERBB3 significantly enhanced sociability. All of the mutant groups demonstrated a lack of social novelty preference, in contrast to their respective wild-type controls. Effects of NRG1, ERBB3, or ERBB4 deficiency on social behavior could not be attributed to general changes in anxiety-like behavior, activity, or loss of olfactory ability. Nrg1+/− pups did not exhibit changes in isolation-induced ultrasonic vocalizations, a measure of emotional reactivity. Overall, these findings provide evidence that social behavior is mediated by NRG1-ERBB signaling

    Tumor-Promoting Role of GNA14 in Colon Cancer Development

    No full text
    Recent studies have shown that mutations in members of the G-protein α family contribute to the onset and progression of cancer. However, the role of GNA14 in CRC remains unknown. In this study, we examined the effect of GNA14 on CRC through genetic approaches in vitro and in vivo. We found that GNA14 knockdown by small interfering RNA (siRNA) inhibited the proliferation of CRC cells SW403 and HT29. Gna14 knockout mice developed normally without obvious abnormalities. However, the number of polyps in the small intestine was significantly reduced in Gna14 knockout mice compared to control mice after mating with ApcMin mice, a representative CRC mouse model. In particular, deletion of the Gna14 inhibited polyp growth, especially in the distal end of the small intestine. Histological examination showed that Gna14 knockout mice suppressed malignant tumor progression due to decreased proliferation and increased apoptosis in polyps compared to controls. In addition, GNA14 knockdown in CRC cells resulted in downregulation of ERK phosphorylation and β-catenin and β-catenin phosphorylation at S675. Similarly, ERK phosphorylation and phospho-β-catenin phosphorylation at S675 were decreased in polyps of Gna14 knockout mice. Collectively, these analyses show that GNA14 may accelerate CRC cell proliferation and malignant tumor progression through ERK and β-catenin pathways

    Angioimmunoblastic T-cell lymphoma-like lymphadenopathy in mice transgenic for human RHOA with p.Gly17Val mutation

    No full text
    A missense mutation in RHOA encoding p.Gly17 Val has been reported to occur frequently in angioimmunoblastic T-cell lymphoma (AITL). Here, we describe a murine model which expresses the human RHOA mutant gene product in a T-cell specific manner and develops AITL-like symptoms. Most transgenic mice feature with latency one or two enlarged lymph nodes characterized by aberrant lymph node architecture, extensive lymphocytic infiltration, extrafollicular meshwork of follicular dendritic cells (FDC) and arborized endothelial venules. Importantly, we provide evidence for expansion of PD-1+ follicular helper T (Tfh) cells which are the neoplastic cells of AITL. In addition, we saw proliferation of B-cells leading to hypergammaglobulinemia and the presence of dominant T cell clonal populations. Transplantation of lymph node cells to immunocompromised mice partly recreated lymphadenopathy after a long latency and with low penetrance suggesting that cells have undergone partial transformation to a premalignant state. Transcriptomic profiling revealed that the gene expression pattern within affected lymph nodes of the mice closely resembles that of AITL patients with the identical RHOA p.Gly17 Val mutation. The murine model should, therefore, be useful in dissecting pathogenesis of AITL at the molecular level particularly for the cases with the RHOA p.Gly17Val mutation

    dCIP4 (Drosophila Cdc42-Interacting Protein 4) Restrains Synaptic Growth by Inhibiting the Secretion of the Retrograde Glass Bottom Boat Signal

    No full text
    The bone morphogenetic protein (BMP) ligand Glass bottom boat (Gbb) acts as a retrograde growth signal at the Drosophila neuromuscular junction (NMJ). Endocytic regulation of presynaptic BMP receptors has been proposed to attenuate retrograde BMP signaling. However, it remains unknown whether the Gbb signal is also regulated by postsynaptic mechanisms. Here, we provide evidence that Drosophila Cdc42-interacting protein 4 (dCIP4) functions postsynaptically to inhibit synaptic growth. dCIP4 is localized postsynaptically at NMJs. dcip4 mutations lead to synaptic overgrowth and increased presynaptic phosphorylated mothers against decapentaplegic (Mad) levels, and these defects are rescued by muscle-specific expression of dCIP4. Biochemical and genetic analyses demonstrate that dCIP4 acts downstream of Cdc42 to activate the postsynaptic Wsp-Arp2/3 pathway. We also show that BMP signaling is necessary for synaptic overgrowth in larvae lacking postsynaptic dcip4 or wsp. Finally, dCIP4 and Wsp inhibit Gbb secretion. Thus, we propose that dCIP4 restrains synaptic growth by inhibiting postsynaptic Gbb secretion through the Wsp-Arp2/3 pathway.This work was supported by grants from the Brain Research Center of the 21st Century Frontier (2009K001278), the Research Program for New Drug Target Discovery (M10748000283-07N4800-28310), the Korea Research Foundation (KRF-2006-312-C00361), the National Research Foundation (NRF-2006-511-C00100) (M.N.), and the Seoul Science Fellowship (S.K.).

    Epiregulin Is Not Essential for Development of Intestinal Tumors but Is Required for Protection from Intestinal Damage

    Get PDF
    Epiregulin, an epidermal growth factor family member, acts as a local signal mediator and shows dual biological activity, stimulating the proliferation of fibroblasts, hepatocytes, smooth muscle cells, and keratinocytes while inhibiting the growth of several tumor-derived epithelial cell lines. The epiregulin gene (Ereg) is located on mouse chromosome 5 adjacent to three other epidermal growth factor family members, epigen, amphiregulin, and betacellulin. Gene targeting was used to insert a lacZ reporter into the mouse Ereg locus and to ablate its function. Although epiregulin is broadly expressed and regulated both spatially and temporally, Ereg null mice show no overt developmental defects, reproductive abnormalities, or altered liver regeneration. Additionally, in contrast to previous hypotheses, Ereg deficiency does not alter intestinal cancer susceptibility, as assayed in the Apc(Min) model, despite showing robust expression in developing tumors. However, Ereg null mice are highly susceptible to cancer-predisposing intestinal damage caused by oral administration of dextran sulfate sodium

    Luteinizing Hormone-Dependent Activation of the Epidermal Growth Factor Network Is Essential for Ovulation

    Get PDF
    In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility
    corecore