1,819 research outputs found

    COMPREHENSIVE ELECTRICAL/OPTICAL/THERMAL CHARACTERIZATIONS OF HIGH POWER LIGHT EMITTING DIODES AND LASER DIODES

    Get PDF
    Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift

    Resonance of Domain Wall in a Ferromagnetic Nanostrip: Relation Between Distortion and Velocity

    Full text link
    The resonance of the magnetic domain wall under the applied field amplifies its velocity compared to the one-dimensional model. To quantify the amplification, we define the distortion variation rate of the domain wall that can represent how fast and severely the wall shape is variated. Introducing that rate gives a way to bring the resonance into the one-dimensional domain wall dynamics model. We obtain the dissipated energy and domain wall velocity amplification by calculating the distortion variation rate. The relationship between velocity and distortion variation rate agrees well with micromagnetic simulation.Comment: 15 pages, 4 figure

    Soft x-ray polarizer for optical productions of any orthogonal state of the linear and circular polarization modes

    Get PDF
    An efficient soft x-ray polarizer that is able to optically convert a linear polarization state to any orthogonal state of not only linear but also circular polarization modes is found by means of numerical calculations of the intensities of individual orthogonal polarization components in reflected waves. Calculation results, using the known linear-polarization-mode based Kerr matrix as well as a newly derived circular-polarization-mode based Kerr matrix, indicate that a +45?? or -45?? linearly polarized incident wave can be readily converted to any orthogonal states of both circular and linear polarization modes, i.e., left- and right-handed circular and s - and p -linear polarizations through reflection, at certain grazing angles of incidence near the critical angle from a simple ferromagnetic thin film of Co (9.0 nm) Si substrate. The intensities of almost pure circularly or linearly polarized reflected waves are about 10% or less in a certain spectral soft x-ray range just below the absorption edges of constituent magnetic elements. The counterpart orthogonal states of the linear as well as circular modes can be rapidly switched simply by reversing oppositely the orientation of longitudinal magnetizations. These results suggest that the orthogonal polarization states of the circular- and linear-polarization modes converted from such a polarizing optical element through reflection can be practically used in probing the vector quantities of element specific magnetizations in multicomponent magnetic materials.open2

    P3-194: The palliative effect of endobronchial brachytherapy for previously irradiated patients

    Get PDF

    Origin, criterion, and mechanism of vortex-core reversals in soft magnetic nanodisks under perpendicular bias fields

    Get PDF
    We studied dynamics of vortex-core reversals driven by circular rotating fields along with static perpendicular magnetic fields of different direction and strength. We found that the application of perpendicular fields H p modifies the starting ground state of vortex magnetizations, thereby instigating the development of a magnetization dip mz,dip in the vicinity of the original core up to its threshold value, m z,dip cri ???-p, which is necessary for vortex-core reversals, where p is the initial core polarization. We found the relationship of the dynamic evolutions of the mz,dip and the out-of-plane gyrofields hz, which was induced, in this case, by vortex-core motion of velocity ??, thereby their critical value relation ??crihz cri. The simulation results indicated that the variation of the critical core velocity ??cri with Hp can be expressed explicitly as ??cri / ?? cri 0 = (??/ ??0) | -p- m z,dip g |, with the core size ?? and the starting ground-state magnetization dip m z,dip g variable with H p, and for the values of ?? cri 0 and ??0 at H p =0. This work offers deeper and/or new insights into the origin, criterion and mechanism of vortex-core reversals under application of static perpendicular bias fields.open7

    Total Reflection and Negative Refraction of Dipole-Exchange Spin Waves at Magnetic Interfaces: Micromagnetic Modeling Study

    Get PDF
    We demonstrated that dipole-exchange spin waves traveling in geometrically restricted magnetic thin films satisfy the same laws of reflection and refraction as light waves. Moreover, we found for the first time novel wave behaviors of dipole-exchange spin waves such as total reflection and negative refraction. The total reflection in laterally inhomogeneous thin films composed of two different magnetic materials is associated with the forbidden modes of refracted dipole-exchange spin waves. The negative refraction occurs at a 90 degree domain-wall magnetic interface that is introduced by a cubic magnetic anisotropy in the media, through the anisotropic dispersion of dipole-exchange spin waves.Comment: 13 pages, 5 figure

    Electric-current-driven vortex-core reversal in soft magnetic nanodots

    Get PDF
    The authors report on electric-current-driven vortex-core (VC) reversal (switching) and the accompanying spin-wave emission, driven by spin-polarized ac currents of different amplitudes and frequencies, investigated by micromagnetic calculations of the dynamic evolution of a magnetic vortex in Permalloy nanodots. The magnetization orientation of the VC is effectively switchable between its upward and downward bistates and controllable by applying current above its threshold density, but with sufficiently small magnitude at frequencies close to the vortex eigenfrequency. This VC reversal phenomenon occurs through the creation of a vortex-antivortex pair and the subsequent annihilation of the initial vortex and the created antivortex, when the velocity of the initial VC reaches its critical value of approximately 340 +/- 20 m/s for the given material and geometry. In the course of these serial processes and immediately after VC switching, strong spin waves are emitted. These results provide physical insights into how and when current-driven VC switching takes place, thereby offering a means to manipulate bistate VC orientations.open554

    Oppositely rotating eigenmodes of spin-polarized current-driven vortex gyrotropic motions in elliptical nanodots

    Get PDF
    The authors found that there exist two different rotational eigenmodes of oppositely rotating sense in spin-polarized current-driven vortex gyrotropic motions in soft magnetic elliptical nanodots. Simple mathematical expressions were analytically calculated by adopting vortex-core (VC)-rotation-sense- dependent dynamic susceptibility tensors based on the linearized Thiele equation [Phys. Rev. Lett. 30, 230 (1973)]. The numerical calculations of those analytical expressions were confirmed by micromagnetic simulations, revealing that linear-regime steady-state VC motions driven by any polarized oscillating currents can be interpreted simply by the superposition of the clockwise and counterclockwise rotational eigenmodes. The shape of the orbital trajectories of the two eigenmodes is determined only by the lateral dimension of elliptical dots. Additionally, the orbital radii and phases of the two eigenmodes' VC motions were found to markedly vary with the frequency of applied currents, particularly across the vortex eigenfrequency and according to the vortex polarization, which results in overall VC motions driven by any polarized oscillating currents.open8
    corecore