124 research outputs found

    The role of 245 phase in alkaline iron selenide superconductors revealed by high pressure studies

    Get PDF
    Here we show that a pressure of about 8 GPa suppresses both the vacancy order and the insulating phase, and a further increase of the pressure to about 18 GPa induces a second transition or crossover. No superconductivity has been found in compressed insulating 245 phase. The metallic phase in the intermediate pressure range has a distinct behavior in the transport property, which is also observed in the superconducting sample. We interpret this intermediate metal as an orbital selective Mott phase (OSMP). Our results suggest that the OSMP provides the physical pathway connecting the insulating and superconducting phases of these iron selenide materials.Comment: 32 pages, 4 figure

    Reemerging superconductivity at 48 K across quantum criticality in iron chalcogenides

    Full text link
    Pressure plays an essential role in the induction1 and control2,3 of superconductivity in iron-based superconductors. Substitution of a smaller rare-earth ion for the bigger one to simulate the pressure effects has surprisingly raised the superconducting transition temperature Tc to the record high 55 K in these materials4,5. However, Tc always goes down after passing through a maximum at some pressure and the superconductivity eventually tends to disappear at sufficiently high pressures1-3. Here we show that the superconductivity can reemerge with a much higher Tc after its destruction upon compression from the ambient-condition value of around 31 K in newly discovered iron chalcogenide superconductors. We find that in the second superconducting phase the maximum Tc is as high as 48.7 K for K0.8Fe1.70Se2 and 48 K for (Tl0.6Rb0.4)Fe1.67Se2, setting the new Tc record in chalcogenide superconductors. The presence of the second superconducting phase is proposed to be related to pressure-induced quantum criticality. Our findings point to the potential route to the further achievement of high-Tc superconductivity in iron-based and other superconductors.Comment: 20 pages and 7 figure

    Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications

    No full text
    Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable regularity estimates
    • …
    corecore