151 research outputs found

    SLUA: A Super Lightweight Unsupervised Word Alignment Model via Cross-Lingual Contrastive Learning

    Full text link
    Word alignment is essential for the down-streaming cross-lingual language understanding and generation tasks. Recently, the performance of the neural word alignment models has exceeded that of statistical models. However, they heavily rely on sophisticated translation models. In this study, we propose a super lightweight unsupervised word alignment (SLUA) model, in which bidirectional symmetric attention trained with a contrastive learning objective is introduced, and an agreement loss is employed to bind the attention maps, such that the alignments follow mirror-like symmetry hypothesis. Experimental results on several public benchmarks demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in word alignment while significantly reducing the training and decoding time on average. Further ablation analysis and case studies show the superiority of our proposed SLUA. Notably, we recognize our model as a pioneer attempt to unify bilingual word embedding and word alignments. Encouragingly, our approach achieves 16.4x speedup against GIZA++, and 50x parameter compression} compared with the Transformer-based alignment methods. We will release our code to facilitate the community.Comment: Work in progres

    ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning

    Full text link
    Many existing autonomous driving paradigms involve a multi-stage discrete pipeline of tasks. To better predict the control signals and enhance user safety, an end-to-end approach that benefits from joint spatial-temporal feature learning is desirable. While there are some pioneering works on LiDAR-based input or implicit design, in this paper we formulate the problem in an interpretable vision-based setting. In particular, we propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously, which is called ST-P3. Specifically, an egocentric-aligned accumulation technique is proposed to preserve geometry information in 3D space before the bird's eye view transformation for perception; a dual pathway modeling is devised to take past motion variations into account for future prediction; a temporal-based refinement unit is introduced to compensate for recognizing vision-based elements for planning. To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system. We benchmark our approach against previous state-of-the-arts on both open-loop nuScenes dataset as well as closed-loop CARLA simulation. The results show the effectiveness of our method. Source code, model and protocol details are made publicly available at https://github.com/OpenPerceptionX/ST-P3.Comment: ECCV 202

    DA-STC: Domain Adaptive Video Semantic Segmentation via Spatio-Temporal Consistency

    Full text link
    Video semantic segmentation is a pivotal aspect of video representation learning. However, significant domain shifts present a challenge in effectively learning invariant spatio-temporal features across the labeled source domain and unlabeled target domain for video semantic segmentation. To solve the challenge, we propose a novel DA-STC method for domain adaptive video semantic segmentation, which incorporates a bidirectional multi-level spatio-temporal fusion module and a category-aware spatio-temporal feature alignment module to facilitate consistent learning for domain-invariant features. Firstly, we perform bidirectional spatio-temporal fusion at the image sequence level and shallow feature level, leading to the construction of two fused intermediate video domains. This prompts the video semantic segmentation model to consistently learn spatio-temporal features of shared patch sequences which are influenced by domain-specific contexts, thereby mitigating the feature gap between the source and target domain. Secondly, we propose a category-aware feature alignment module to promote the consistency of spatio-temporal features, facilitating adaptation to the target domain. Specifically, we adaptively aggregate the domain-specific deep features of each category along spatio-temporal dimensions, which are further constrained to achieve cross-domain intra-class feature alignment and inter-class feature separation. Extensive experiments demonstrate the effectiveness of our method, which achieves state-of-the-art mIOUs on multiple challenging benchmarks. Furthermore, we extend the proposed DA-STC to the image domain, where it also exhibits superior performance for domain adaptive semantic segmentation. The source code and models will be made available at \url{https://github.com/ZHE-SAPI/DA-STC}.Comment: 18 pages,9 figure

    Towards Robust Referring Image Segmentation

    Full text link
    Referring Image Segmentation (RIS) aims to connect image and language via outputting the corresponding object masks given a text description, which is a fundamental vision-language task. Despite lots of works that have achieved considerable progress for RIS, in this work, we explore an essential question, "what if the description is wrong or misleading of the text description?". We term such a sentence as a negative sentence. However, we find that existing works cannot handle such settings. To this end, we propose a novel formulation of RIS, named Robust Referring Image Segmentation (R-RIS). It considers the negative sentence inputs besides the regularly given text inputs. We present three different datasets via augmenting the input negative sentences and a new metric to unify both input types. Furthermore, we design a new transformer-based model named RefSegformer, where we introduce a token-based vision and language fusion module. Such module can be easily extended to our R-RIS setting by adding extra blank tokens. Our proposed RefSegformer achieves the new state-of-the-art results on three regular RIS datasets and three R-RIS datasets, which serves as a new solid baseline for further research. The project page is at \url{https://lxtgh.github.io/project/robust_ref_seg/}.Comment: technical repor

    Learning to Learn from APIs: Black-Box Data-Free Meta-Learning

    Full text link
    Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data. Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models (iii) with the same architecture, neglecting the more practical setting where the users only have inference access to the APIs with arbitrary model architectures and model scale inside. To solve this issue, we propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single meta model. Specifically, by just querying APIs, we inverse each API to recover its training data via a zero-order gradient estimator and then perform meta-learning via a novel bi-level meta knowledge distillation structure, in which we design a boundary query set recovery technique to recover a more informative query set near the decision boundary. In addition, to encourage better generalization within the setting of limited API budgets, we propose task memory replay to diversify the underlying task distribution by covering more interpolated tasks. Extensive experiments in various real-world scenarios show the superior performance of our BiDf-MKD framework

    TD^2-Net: Toward Denoising and Debiasing for Dynamic Scene Graph Generation

    Full text link
    Dynamic scene graph generation (SGG) focuses on detecting objects in a video and determining their pairwise relationships. Existing dynamic SGG methods usually suffer from several issues, including 1) Contextual noise, as some frames might contain occluded and blurred objects. 2) Label bias, primarily due to the high imbalance between a few positive relationship samples and numerous negative ones. Additionally, the distribution of relationships exhibits a long-tailed pattern. To address the above problems, in this paper, we introduce a network named TD2^2-Net that aims at denoising and debiasing for dynamic SGG. Specifically, we first propose a denoising spatio-temporal transformer module that enhances object representation with robust contextual information. This is achieved by designing a differentiable Top-K object selector that utilizes the gumbel-softmax sampling strategy to select the relevant neighborhood for each object. Second, we introduce an asymmetrical reweighting loss to relieve the issue of label bias. This loss function integrates asymmetry focusing factors and the volume of samples to adjust the weights assigned to individual samples. Systematic experimental results demonstrate the superiority of our proposed TD2^2-Net over existing state-of-the-art approaches on Action Genome databases. In more detail, TD2^2-Net outperforms the second-best competitors by 12.7 \% on mean-Recall@10 for predicate classification.Comment: Accepted by AAAI 202
    corecore