22 research outputs found

    Bronchial macrophages in asthmatics reveal decreased CD16 expression and substantial levels of receptors for IL-10, but not IL-4 and IL-7.

    Get PDF
    The role of different subpopulations of bronchial macrophages (BMs) in asthma pathogenesis has not yet been completely elucidated. In addition, little is known about potential in vivo responsiveness of BMs to pro- and anti-inflam-matory cytokines present in the bronchial milieu. We aimed to characterize asthmatic patients' BM subpopulations delineated by common markers of macrophage/monocyte cells, CD16 and CD14, and subsequently to analyze cytokine receptor expression on those subsets. Subjects included eighteen patients with moderate asthma (six steroid-naive and twelve steroid-treated) and ten healthy control subjects. Flow cytometry was used to analyze phenotypical features of BMs including expression of receptors for IL-10, IL-4 and IL-7. Exhaled nitric oxide analysis and induced sputum eosinophil counts were used to assess airway inflammation. BMs from both steroid-naive and steroid-treated asthmatic patients showed significantly decreased expression of CD16, as compared to healthy subjects' BMs. CD16, but not CD14, expression inversely correlated with exhaled nitric oxide levels and sputum eosinophilia. Short-term administration of inhaled cortiocosteroids (ICS) in steroid-naive asthmatic patients led to significant reduction of CD16 expression and enhancement of CD14 expression. Next, we analyzed the expression of receptors for IL-10, IL-4 and IL-7 on the surface of BM subpopulations characterized by different levels of CD14 and CD16 expression. We observed substantial levels of IL-10R on the surface of BMs collected from asthmatic and healthy subjects. Interestingly, IL-10R was found mostly on those macrophages that co-expressed CD14. In contrast, independently on co-expression of CD14, the levels of IL-4R and IL-7R on BMs were low in both asthmatic and healthy subjects. The results suggest that different BM subsets may be differentially involved in regulating the inflammatory response in allergic asthma

    The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells.

    Get PDF
    Doxorubicin (Adriamycin) is the most active drug in the treatment of breast cancer. The aim of this study was to investigate the interaction of doxorubicin and retinoids in the inhibition of proliferation of hormone sensitive (ER+) human breast cancer cell line MCF-7 and to find out whether this combination can result in the enhancement of its therapeutic effect. As a comparison we also used estradiol and tamoxifen. We also made an attempt to elucidate the effect of these compounds on the stimulation of the apoptotic pathway in breast cancer cells. Cell proliferation in a 24-hour culture was assessed by [3H] thymidine incorporation into cancer cells and by immunocytochemical analysis of cellular cycle-related PCNA and Ki-67 antigens expression, after the incubation of the cell culture with 10, 20 and 50 nM doxorubicin (DOX), 2 nM estradiol (E2), 10 microM tamoxifen (TAM) and 1 nM, 0.01, 0.1, 1 and 10 microM of all-trans retinoid acid (ATRA). The assessment of cell viability and analysis of apoptotic and necrotic cells were performed after the 72-hour incubation of the culture with the examined substances and following apoptosis induction using acridine orange and ethidine bromide. Of the doxorubicin concentrations used in the study, 20 nM inhibited thymidine incorporation to 84.83 +/- 10.00% (control=100%). In the same culture conditions, 2 nM E2 stimulated cancer cells to 157.09 +/- 8.84%. Concentrations of 10 microM TAM and 10 microM ATRA inhibited the proliferation to 63.16 +/- 7.85% and 52.19 +/- 3.21%, respectively. A statistically significant reduction of these values was observed when 20 nM DOX was added to medium with E2 - 39.24 +/- 7.6%, TAM - 48.34 +/- 2.05% and ATRA - 21.98 +/- 1.69%, respectively; the percentage of PCNA- and Ki-67-positive cells was also reduced. Despite high antiproliferative efficacy of 20 nM DOX and 10 microM ATRA combination, the percentage of apoptotic cells was only 25 +/- 0.81%, being similar to that obtained in the culture with 20 nM DOX. The concentrations of 10, 20 and 50 nM DOX that were used to inhibit the proliferation of MCF-7 cell line were not particulary effective. The inhibitory effect was obtained when 20 nM of DOX and E2, TAM or ATRA were used simultaneously. The use of E2 caused a two-fold decrease in the percentage of proliferating cells. It was also shown that the effectiveness of DOX in combination with ATRA is significantly higher than that of DOX combined with TAM, which might suggest a valuable approach to the treatment of breast cancer

    The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells.

    Get PDF
    Doxorubicin (Adriamycin) is the most active drug in the treatment of breast cancer. The aim of this study was to investigate the interaction of doxorubicin and retinoids in the inhibition of proliferation of hormone sensitive (ER+) human breast cancer cell line MCF-7 and to find out whether this combination can result in the enhancement of its therapeutic effect. As a comparison we also used estradiol and tamoxifen. We also made an attempt to elucidate the effect of these compounds on the stimulation of the apoptotic pathway in breast cancer cells. Cell proliferation in a 24-hour culture was assessed by [3H] thymidine incorporation into cancer cells and by immunocytochemical analysis of cellular cycle-related PCNA and Ki-67 antigens expression, after the incubation of the cell culture with 10, 20 and 50 nM doxorubicin (DOX), 2 nM estradiol (E2), 10 microM tamoxifen (TAM) and 1 nM, 0.01, 0.1, 1 and 10 microM of all-trans retinoid acid (ATRA). The assessment of cell viability and analysis of apoptotic and necrotic cells were performed after the 72-hour incubation of the culture with the examined substances and following apoptosis induction using acridine orange and ethidine bromide. Of the doxorubicin concentrations used in the study, 20 nM inhibited thymidine incorporation to 84.83 +/- 10.00% (control=100%). In the same culture conditions, 2 nM E2 stimulated cancer cells to 157.09 +/- 8.84%. Concentrations of 10 microM TAM and 10 microM ATRA inhibited the proliferation to 63.16 +/- 7.85% and 52.19 +/- 3.21%, respectively. A statistically significant reduction of these values was observed when 20 nM DOX was added to medium with E2 - 39.24 +/- 7.6%, TAM - 48.34 +/- 2.05% and ATRA - 21.98 +/- 1.69%, respectively; the percentage of PCNA- and Ki-67-positive cells was also reduced. Despite high antiproliferative efficacy of 20 nM DOX and 10 microM ATRA combination, the percentage of apoptotic cells was only 25 +/- 0.81%, being similar to that obtained in the culture with 20 nM DOX. The concentrations of 10, 20 and 50 nM DOX that were used to inhibit the proliferation of MCF-7 cell line were not particulary effective. The inhibitory effect was obtained when 20 nM of DOX and E2, TAM or ATRA were used simultaneously. The use of E2 caused a two-fold decrease in the percentage of proliferating cells. It was also shown that the effectiveness of DOX in combination with ATRA is significantly higher than that of DOX combined with TAM, which might suggest a valuable approach to the treatment of breast cancer

    Bronchial macrophages in asthmatics reveal decreased CD16 expression and substantial levels of receptors for IL-10, but not IL-4 and IL-7.

    No full text
    The role of different subpopulations of bronchial macrophages (BMs) in asthma pathogenesis has not yet been completely elucidated. In addition, little is known about potential in vivo responsiveness of BMs to pro- and anti-inflam-matory cytokines present in the bronchial milieu. We aimed to characterize asthmatic patients' BM subpopulations delineated by common markers of macrophage/monocyte cells, CD16 and CD14, and subsequently to analyze cytokine receptor expression on those subsets. Subjects included eighteen patients with moderate asthma (six steroid-naive and twelve steroid-treated) and ten healthy control subjects. Flow cytometry was used to analyze phenotypical features of BMs including expression of receptors for IL-10, IL-4 and IL-7. Exhaled nitric oxide analysis and induced sputum eosinophil counts were used to assess airway inflammation. BMs from both steroid-naive and steroid-treated asthmatic patients showed significantly decreased expression of CD16, as compared to healthy subjects' BMs. CD16, but not CD14, expression inversely correlated with exhaled nitric oxide levels and sputum eosinophilia. Short-term administration of inhaled cortiocosteroids (ICS) in steroid-naive asthmatic patients led to significant reduction of CD16 expression and enhancement of CD14 expression. Next, we analyzed the expression of receptors for IL-10, IL-4 and IL-7 on the surface of BM subpopulations characterized by different levels of CD14 and CD16 expression. We observed substantial levels of IL-10R on the surface of BMs collected from asthmatic and healthy subjects. Interestingly, IL-10R was found mostly on those macrophages that co-expressed CD14. In contrast, independently on co-expression of CD14, the levels of IL-4R and IL-7R on BMs were low in both asthmatic and healthy subjects. The results suggest that different BM subsets may be differentially involved in regulating the inflammatory response in allergic asthma

    Rotational Thromboelastometry (ROTEM<sup>®</sup>) in Relation to Inflammatory Biomarkers and Clinical Outcome in COVID-19 Patients

    No full text
    Background: The pathogenesis of hypercoagulability in COVID-19 patients is complex and not fully understood. Rotational thromboelastometry (ROTEM®) is a viscoelastic method that allows the definition of a patient’s hemostatic profile. This study aimed to assess the relationship between ROTEM® parameters, the profile of inflammatory cytokines, and clinical outcomes in COVID-19 patients. Methods: A total of 63 participants (n = 29 symptomatic non-ICU COVID-19 patients, and n = 34 healthy controls) were prospectively included in the study. We assessed the relationship between the parameters of three ROTEM® tests (NATEM®, EXTEM®, and FIBTEM®) and levels of CRP, interleukin-8, interleukin-1β, interleukin-6, interleukin-10, tumor necrosis factor, interleukin 12p70, and clinical outcomes. Results: ROTEM® indicated hypercoagulability in COVID-19 patients in all the tests performed. The levels of all inflammatory cytokines were significantly higher in COVID-19 patients. NATEM more frequently detected hypercoagulability in COVID-19 patients compared to EXTEM. The strongest correlations with inflammatory biomarkers and CT severity score were with FIBTEM parameters. The elevated maximum clot elasticity (MCE) in FIBTEM was the strongest predictor of poor outcomes. Conclusions: Increased FIBTEM MCE may be associated with greater severity of COVID-19. Non-activated ROTEM (NATEM test) seems to be more valuable for detecting hypercoagulability in COVID-19 patients compared to the tissue factor activated test (EXTEM)

    Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV) Supplemented by Optical Data: A Case Study of Biebrza Wetlands in Northeast Poland

    No full text
    The aim of the study was to elaborate the remote sensing methods for monitoring wetlands ecosystems. The investigation was carried out during the years 2002–2010 in the Biebrza Wetlands. The meteorological conditions at the test site varied from extremely dry to very wet. The authors propose applying satellite remote sensing data acquired in the optical and microwave spectrums to classify wetlands vegetation habitats for the assessment of vegetation changes and estimation of wetlands’ biophysical properties to improve monitoring of these unique, very often physically impenetrable, areas. The backscattering coefficients (σ°) calculated from ALOS PALSAR FBD (Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar, Fine Beam Dual Mode) images registered at cross polarization HV on 12 May 2008 were used to classify the main wetland communities using ground truth observations and the visual interpretation method. As a result, the σ° values were distributed among the six wetlands’ vegetation classes: scrubs, sedges-scrubs, sedges, reeds, sedges-reeds, rushes, and the areas of each community and changes were assessed. Also, the change in the biophysical variable as Leaf Area Index (LAI) is described using the information from PALSAR data. Strong linear relationships have been found between LAI and σ° derived for particular wetland classes, which then were applied to elaborate the maps of LAI distribution. The other variables used to characterize the changing environmental conditions are: surface temperature (Ts) calculated from NOAA AVHRR (National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer) and Normalized Difference Vegetation Index (NDVI) from ENVISAT MERIS (ENVIronmental SATellite MEdium Resolution Imaging Spectrometer). Differences of almost double Ts between “dry” and “wet” years were noticed that reflect observed weather conditions. The highest values of NDVI occurred in years with a sufficient amount of precipitation with the lowest in “dry” years. NDVI values variances within the same wetlands class resulted mainly from the differences in soil moisture. The results of this study show that the satellite data from microwave and optical spectrum gave the repetitive spatial information about vegetation growth conditions and could be used for monitoring wetland ecosystems
    corecore