84 research outputs found

    Large coupling-strength expansion of the M{\o}ller-Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms

    Get PDF
    We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction expansion the M{\o}ller-Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized case, reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading order. We also analyze the H2 molecule and the uniform electron gas

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Infective endocarditis in intravenous drug abusers: an update

    Get PDF
    Infective endocarditis despite advances in diagnosis remains a common cause of hospitalization, with high morbidity and mortality rates. Through literature review it is possible to conclude that polymicrobial endocarditis occurs mainly in intravenous drug abusers with predominance in the right side of the heart, often with tricuspid valve involvement. This fact can be associated with the type of drug used by the patients; therefore, knowledge of the patient's history is critical for adjustment of the therapy. It is also important to emphasize that the most common combinations of organisms in polymicrobial infective endocarditis are: Staphylococcus aureus, Streptococcus pneumonia and Pseudomonas aeruginosa, as well as mixed cultures of Candida spp. and bacteria. A better understanding of the epidemiology and associated risk factors are required in order to develop an efficient therapy, although PE studies are difficult to perform due to the rarity of cases and lack of prospective cohorts.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BPD/47693/2008, SFRH/BPD/20987/2004 and SFRH/BPD/72632/2010 attributed to Claudia Sousa, Claudia Botelho and Diana Rodrigues, respectively

    Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life

    Get PDF
    In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins

    Study protocol of the iMPaCT project : A longitudinal cohort study assessing psychological determinants, sexual behaviour and chlamydia (re)infections in heterosexual STI clinic visitors

    Get PDF
    Acknowledgements We are grateful to the staff at the STI clinics of Amsterdam, Kennemerland, Hollands Noorden, Twente, who are involved in the recruitment and data collection of participants, and Marlous Ratten and Klazien Visser from Soapoli-online, who are involved in the coordination of laboratory testing of the home-based sampling kits at six-month follow-up. We also thank the staff at the STI department at the National Institute for Public Health and the Environment, especially Birgit van Benthem. Funding This project is funded by the Strategic Programme (SPR) of the National Institute for Public Health and the Environment (RIVM) (project number S/113004/01/IP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Availability of data and materials The dataset (anonymised) generated during this study will be made available for interested parties on request.Peer reviewedPublisher PD

    Mining Big Data for Tourist Hot Spots: Geographical Patterns of Online Footprints

    Get PDF
    Understanding the complex, and often unequal, spatiality of tourist demand in urban contexts requires other methodologies, among which the information base available online and in social networks has gained prominence. Innovation supported by Information and Communication Technologies in terms of data access and data exchange has emerged as a complementary supporting tool for the more traditional data collection techniques currently in use, particularly, in urban destinations where there is the need to more (near)real-time monitoring. The capacity to collect and analise massive amounts of data on individual and group behaviour is leading to new data-rich research approaches. This chapter addresses the potential for discovering geographical insights regarding tourists’ spatial patterns within a destination, based on the analysis of geotagged data available from two social networks. ·info:eu-repo/semantics/publishedVersio

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Is the interplay between epigenetic markers related to the acclimation of Cork oak plants to high temperatures?

    Get PDF
    Trees necessarily experience changes in temperature, requiring efficient short-term strategies that become crucial in environmental change adaptability. DNA methylation and histone posttranslational modifications have been shown to play a key role in both epigenetic control and plant functional status under stress by controlling the functional state of chromatin and gene expression. Cork oak (Quercus suber L.) is a key stone of the Mediterranean region, growing at temperatures of 45°C. This species was subjected to a cumulative temperature increase from 25°C to 55°C under laboratory conditions in order to test the hypothesis that epigenetic code is related to heat stress tolerance. Electrolyte leakage increased after 35°C, but all plants survived to 55°C. DNA methylation and acetylated histone H3 (AcH3) levels were monitored by HPCE (high performance capillary electrophoresis), MS-RAPD (methylation-sensitive random-amplified polymorphic DNA) and Protein Gel Blot analysis and the spatial distribution of the modifications was assessed using a confocal microscope. DNA methylation analysed by HPCE revealed an increase at 55°C, while MS-RAPD results pointed to dynamic methylation-demethylation patterns over stress. Protein Gel Blot showed the abundance index of AcH3 decreasing from 25°C to 45°C. The immunohistochemical detection of 5-mC (5-methyl-2'-deoxycytidine) and AcH3 came upon the previous results. These results indicate that epigenetic mechanisms such as DNA methylation and histone H3 acetylation have opposite and particular dynamics that can be crucial for the stepwise establishment of this species into such high stress (55°C), allowing its acclimation and survival. This is the first report that assesses epigenetic regulation in order to investigate heat tolerance in forest trees.This work is supported by FEDER through COMPETE (Programa Operacional Factores de Competitividade) and by the FCT project PTDC/AGR-CFL/ 112996/2009. G. Pinto is hired under the programme Cie ˆncia 2008 (FCT, Portugal), co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and European Social Fund (EU). FCT supported the fellowship of M.C. Dias (SFRH/BPD/41700/2007). L. Valledor fellow was supported by a Marie Curie Action of the European Union (FP7-PEOPLE-IEF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.publishe
    corecore