45 research outputs found

    Evolino for recurrent support vector machines

    Full text link
    Traditional Support Vector Machines (SVMs) need pre-wired finite time windows to predict and classify time series. They do not have an internal state necessary to deal with sequences involving arbitrary long-term dependencies. Here we introduce a new class of recurrent, truly sequential SVM-like devices with internal adaptive states, trained by a novel method called EVOlution of systems with KErnel-based outputs (Evoke), an instance of the recent Evolino class of methods. Evoke evolves recurrent neural networks to detect and represent temporal dependencies while using quadratic programming/support vector regression to produce precise outputs. Evoke is the first SVM-based mechanism learning to classify a context-sensitive language. It also outperforms recent state-of-the-art gradient-based recurrent neural networks (RNNs) on various time series prediction tasks.Comment: 10 pages, 2 figure

    Deep AutoRegressive Networks

    Full text link
    We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from quickly and exactly via ancestral sampling. We derive an efficient approximate parameter estimation method based on the minimum description length (MDL) principle, which can be seen as maximising a variational lower bound on the log-likelihood, with a feedforward neural network implementing approximate inference. We demonstrate state-of-the-art generative performance on a number of classic data sets: several UCI data sets, MNIST and Atari 2600 games.Comment: Appears in Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, China, 201

    Playing Atari with Deep Reinforcement Learning

    Full text link
    We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.Comment: NIPS Deep Learning Workshop 201
    corecore