12 research outputs found
Air Pollution over North-West Bay of Bengal in the Early Post-Monsoon Season Based on NASA MERRAero Data
The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office (GMAO). This reanalysis is based on a version of the GEOS-5 model radiatively coupled with GOCART aerosols, and it includes assimilation of bias-corrected Aerosol Optical Thickness (AOT) from the MODIS sensor on both Terra and Aqua satellites. Our main finding is that, in October, in the absence of aerosol sources in north-west Bay of Bengal (BoB), MERRAero showed increasing AOT trends over north-west BoB exceeding those over the east of the Ganges basin. The Ganges basin is characterized by significant population growth accompanied by developing industry, agriculture, and increasing transportation: this has resulted in declining air quality. MERRAero data for the period 2002-2009 was used to study AOT trends over north-west Bay of Bengal (BoB) in the early post-monsoon season. This season is characterized by aerosol transport from the Ganges basin to north-west BoB by prevailing winds; and still significant rainfall of over 150 mmmonth. Different aerosol components showed strong increasing AOT trends over north-west BoB. The following factors contributed to the increasing AOT trend over the area in question in October: an increasing number of days when prevailing winds blew from land to sea, resulting in a drier environment and an increase in air pollution over north-west BoB; wind convergence was observed over north-west BoB causing the accumulation of aerosol particles over that region, when prevailing winds blew from land to sea. MERRAero aerosol reanalysis can be used on a global scale
A Global Perspective of Atmospheric CO2 Concentrations
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions
Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement
Technical Report Series on Global Modeling and Data Assimilation
NASA's Global Modeling and Assimilation Office has extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) tool with five atmospheric aerosol species (sulfates, organic carbon, black carbon, mineral dust and sea salt). This inclusion of aerosol reanalysis data is now known as MERRAero. This study analyses a ten-year period (July 2002 - June 2012) MERRAero aerosol reanalysis applied to the study of aerosol optical depth (AOD) and its trends for the aforementioned aerosol species over the world's major cities (with a population of over 2 million inhabitants). We found that a proportion of various aerosol species in total AOD exhibited a geographical dependence. Cities in industrialized regions (North America, Europe, central and eastern Asia) are characterized by a strong proportion of sulfate aerosols. Organic carbon aerosols are dominant over cities which are located in regions where biomass burning frequently occurs (South America and southern Africa). Mineral dust dominates other aerosol species in cities located in proximity to the major deserts (northern Africa and western Asia). Sea salt aerosols are prominent in coastal cities but are dominant aerosol species in very few of them. AOD trends are declining over cities in North America, Europe and Japan, as a result of effective air quality regulation. By contrast, the economic boom in China and India has led to increasing AOD trends over most cities in these two highly-populated countries. Increasing AOD trends over cities in the Middle East are caused by increasing desert dust
Evaluating Observation Influence on Regional Water Budgets in Reanalyses
The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations
Applications for Near-Real Time Satellite Cloud and Radiation Products
At NASA Langley Research Center, a variety of cloud, clear-sky, and radiation products are being derived at different scales from regional to global using geostationary satellite (GEOSat) and lower Earth-orbiting (LEOSat) imager data. With growing availability, these products are becoming increasingly valuable for weather forecasting and nowcasting. These products include, but are not limited to, cloud-top and base heights, cloud water path and particle size, cloud temperature and phase, surface skin temperature and albedo, and top-of-atmosphere radiation budget. Some of these data products are currently assimilated operationally in a numerical weather prediction model. Others are used unofficially for nowcasting, while testing is underway for other applications. These applications include the use of cloud water path in an NWP model, cloud optical depth for detecting convective initiation in cirrus-filled skies, and aircraft icing condition diagnoses among others. This paper briefly describes a currently operating system that analyzes data from GEOSats around the globe (GOES, Meteosat, MTSAT, FY-2) and LEOSats (AVHRR and MODIS) and makes the products available in near-real time through a variety of media. Current potential future use of these products is discussed
Atmospheric Reanalyses-Recent Progress and Prospects for the Future. A Report from a Technical Workshop, April 2010
In April 2010, developers representing each of the major reanalysis centers met at Goddard Space Flight Center to discuss technical issues - system advances and lessons learned - associated with recent and ongoing atmospheric reanalyses and plans for the future. The meeting included overviews of each center s development efforts, a discussion of the issues in observations, models and data assimilation, and, finally, identification of priorities for future directions and potential areas of collaboration. This report summarizes the deliberations and recommendations from the meeting as well as some advances since the workshop
On the Choice of Variable for Atmospheric Moisture Analysis
The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudorelative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent covariances. In the presence of multivariate (temperature-moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity-temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity-temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis is easily implemented in an existing moisture analysis system, by simply scaling observed-minus background moisture residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward
Impact of TRMM and SSM/I-derived Precipitation and Moisture Data on the GEOS Global Analysis
Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. The Data Assimilation Office at NASA's Goddard Space Flight Center has been exploring the use of space-based rainfall and total precipitable water (TPW) estimates to constrain these hydrological parameters in the Goddard Earth Observing System (GEOS) global data assimilation system. We present results showing that assimilating the 6-hour averaged rain rates and TPW estimates from the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/Imager (SSM/I) instruments improves not only the precipitation and moisture estimates but also reduce state-dependent systematic errors in key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation. The improved analysis also improves short-range forecasts beyond 1 day, but the impact is relatively modest compared with improvements in the time-averaged analysis. The study shows that, in the presence of biases and other errors of the forecast model, improving the short-range forecast is not necessarily prerequisite for improving the assimilation as a climate data set. The full impact of a given type of observation on the assimilated data set should not be measured solely in terms of forecast skills
An Adaptive Buddy Check for Observational Quality Control
An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations