3,416 research outputs found

    KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems

    Full text link
    Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation only relies on exact matching with human references and disregards reference-free attributes. This scheme fails to recognize systems that generate keyphrases that are semantically equivalent to the references or keyphrases that have practical utility. To better understand the strengths and weaknesses of different keyphrase systems, we propose a comprehensive evaluation framework consisting of six critical dimensions: naturalness, faithfulness, saliency, coverage, diversity, and utility. For each dimension, we discuss the desiderata and design semantic-based metrics that align with the evaluation objectives. Rigorous meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously used metrics. Using this framework, we re-evaluate 18 keyphrase systems and further discover that (1) the best model differs in different dimensions, with pre-trained language models achieving the best in most dimensions; (2) the utility in downstream tasks does not always correlate well with reference-based metrics; and (3) large language models exhibit a strong performance in reference-free evaluation

    How well can Text-to-Image Generative Models understand Ethical Natural Language Interventions?

    Full text link
    Text-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., 'a photo of a lawyer'). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., 'if all individuals can be a lawyer irrespective of their gender') in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes -- gender, skin color, and culture. Through ENTIGEN framework, we find that the generations from minDALL.E, DALL.E-mini and Stable Diffusion cover diverse social groups while preserving the image quality. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as 'irrespective of gender' in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp.Comment: 13 pages, 8 figures, 6 tables. Accepted as Oral Presentation at EMNLP 202

    Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation

    Full text link
    Instruction tuning has emerged to enhance the capabilities of large language models (LLMs) to comprehend instructions and generate appropriate responses. Existing methods either manually annotate or employ LLM (e.g., GPT-series) to generate data for instruction tuning. However, they often overlook associating instructions with existing annotated datasets. In this paper, we propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data. Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions. By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions (e.g., it costs less than $12 USD by calling GPT-3.5-turbo for generating 800K instruction tuning samples; 2) it provides high-quality data for instruction tuning (e.g., it performs better than Alpaca and Flan on Super-NI and Longform with comparable data sizes); and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available. We further investigate a continual learning scheme for learning with the ever-growing instruction-tuning dataset, and demonstrate that replaying tasks with diverse instruction embeddings not only helps mitigate forgetting issues but generalizes to unseen tasks better. Code and data are available at https://github.com/WadeYin9712/Dynosaur.Comment: EMNLP 2023. Code and data are available at https://github.com/WadeYin9712/Dynosau

    How Does Data Augmentation Affect Privacy in Machine Learning?

    Full text link
    It is observed in the literature that data augmentation can significantly mitigate membership inference (MI) attack. However, in this work, we challenge this observation by proposing new MI attacks to utilize the information of augmented data. MI attack is widely used to measure the model's information leakage of the training set. We establish the optimal membership inference when the model is trained with augmented data, which inspires us to formulate the MI attack as a set classification problem, i.e., classifying a set of augmented instances instead of a single data point, and design input permutation invariant features. Empirically, we demonstrate that the proposed approach universally outperforms original methods when the model is trained with data augmentation. Even further, we show that the proposed approach can achieve higher MI attack success rates on models trained with some data augmentation than the existing methods on models trained without data augmentation. Notably, we achieve a 70.1% MI attack success rate on CIFAR10 against a wide residual network while the previous best approach only attains 61.9%. This suggests the privacy risk of models trained with data augmentation could be largely underestimated.Comment: AAAI Conference on Artificial Intelligence (AAAI-21). Source code available at: https://github.com/dayu11/MI_with_D

    Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs

    Full text link
    We introduce Lumos, a novel framework for training language agents that employs a unified data format and a modular architecture based on open-source large language models (LLMs). Lumos consists of three distinct modules: planning, grounding, and execution. The planning module breaks down a task into a series of high-level, tool-agnostic subgoals, which are then made specific by the grounding module through a set of low-level actions. These actions are subsequently executed by the execution module, utilizing a range of off-the-shelf tools and APIs. In order to train these modules effectively, high-quality annotations of subgoals and actions were collected and are made available for fine-tuning open-source LLMs for various tasks such as complex question answering, web tasks, and math problems. Leveraging this unified data and modular design, Lumos not only achieves comparable or superior performance to current, state-of-the-art agents, but also exhibits several key advantages: (1) Lumos surpasses GPT-4/3.5-based agents in complex question answering and web tasks, while equalling the performance of significantly larger LLM agents on math tasks; (2) Lumos outperforms open-source agents created through conventional training methods and those using chain-of-thoughts training; and (3) Lumos is capable of effectively generalizing to unseen interactive tasks, outperforming larger LLM-based agents and even exceeding performance of specialized agents.Comment: Project website: https://allenai.github.io/lumos
    • …
    corecore