12,803 research outputs found

    Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy

    Full text link
    By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.Comment: 9 page

    New symmetries for the Ablowitz-Ladik hierarchies

    Full text link
    In the letter we give new symmetries for the isospectral and non-isospectral Ablowitz-Ladik hierarchies by means of the zero curvature representations of evolution equations related to the Ablowitz-Ladik spectral problem. Lie algebras constructed by symmetries are further obtained. We also discuss the relations between the recursion operator and isospectral and non-isospectral flows. Our method can be generalized to other systems to construct symmetries for non-isospectral equations.Comment: 11 page

    Low-dose chemotherapy of hepatocellular carcinoma through triggered-release from bilayer-decorated magnetoliposomes

    Get PDF
    Low-dose (LD) chemotherapy is a promising treatment strategy that may be improved by controlled delivery. Polyethylene glycol-stabilized bilayer-decorated magnetoliposomes (dMLs) have been designed as a stimuli-responsive LD chemotherapy drug delivery system and tested in vitro using Huh-7 hepatocellular carcinoma cell line. The dMLs contained hydrophobic superparamagnetic iron oxide nanoparticles within the lipid bilayer and doxorubicin hydrochloride (DOX, 2 μM) within the aqueous core. Structural analysis by cryogenic transmission electron microscopy and dynamic light scattering showed that the assemblies were approximately 120 nm in diameter. Furthermore, the samples consisted of a mixture of dMLs and bare liposomes (no nanoparticles), which provided dual burst and spontaneous DOX release profiles, respectively. Cell viability results show that the cytotoxicity of DOX-loaded dMLs was similar to that of bare dMLs (∼10%), which indicates that spontaneous DOX leakage had little cytotoxic effect. However, when subjected to a physiologically acceptable radiofrequency (RF) electromagnetic field, cell viability was reduced up to 40% after 8 h and significant cell death (\u3e90%) was observed after 24 h. The therapeutic mechanism was intracellular RF-triggered DOX release from the dMLs and not intracellular hyperthermia due to nanoparticle heating via magnetic losses. [Refer to PDF for graphical abstract

    Multiple Pairwise Ranking Networks for Personalized Video Summarization

    Get PDF

    Extreme subradiance from two-band Bloch oscillations in atomic arrays

    Full text link
    Atomic arrays provide an important quantum optical platform with photon-mediated dipoledipole interactions, which can be engineered to realize key applications in quantum information processing. A major obstacle for such application is the fast decay of the excited states. By controlling two-band Bloch oscillations in an atomic array under external magnetic field, here we show that exotic subradiance can be realized and maintained at a time scale upto 12 orders of magnitude larger than the spontaneous decay time in atomic arrays with the finite size. The key finding is to show a way for preventing the wavepacket of excited states scattering into the dissipative zone inside the free space light cone, which therefore leads to the excitation staying at a subradiant state for extremely long decay time. We show that such operation can be achieved by introducing a spatially linear potential from external magnetic field in atomic arrays and then manipulating interconnected two-band Bloch oscillations along opposite directions. Our results also point out the possibility of controllable switching between superradiant and subradiant states, which leads to potential applications in quantum storage.Comment: 6 pages, 3 figure

    Entanglement Structure: Entanglement Partitioning in Multipartite Systems and Its Experimental Detection Using Optimizable Witnesses

    Full text link
    Creating large-scale entanglement lies at the heart of many quantum information processing protocols and the investigation of fundamental physics. For multipartite quantum systems, it is crucial to identify not only the presence of entanglement but also its detailed structure. This is because in a generic experimental situation with sufficiently many subsystems involved, the production of so-called genuine multipartite entanglement remains a formidable challenge. Consequently, focusing exclusively on the identification of this strongest type of entanglement may result in an all or nothing situation where some inherently quantum aspects of the resource are overlooked. On the contrary, even if the system is not genuinely multipartite entangled, there may still be many-body entanglement present in the system. An identification of the entanglement structure may thus provide us with a hint about where imperfections in the setup may occur, as well as where we can identify groups of subsystems that can still exhibit strong quantum-information-processing capabilities. However, there is no known efficient methods to identify the underlying entanglement structure. Here, we propose two complementary families of witnesses for the identification of such structures. They are based on the detection of entanglement intactness and entanglement depth, each requires only the implementation of solely two local measurements. Our method is also robust against noises and other imperfections, as reflected by our experimental implementation of these tools to verify the entanglement structure of five different eight-photon entangled states. We demonstrate how their entanglement structure can be precisely and systematically inferred from the experimental data. In achieving this goal, we also illustrate how the same set of data can be classically postprocessed to learn the most about the measured system.Comment: 21 pages, 13 figure
    • …
    corecore