995 research outputs found
Chronic Ethanol Consumption Impairs the Tactile-Evoked Long-Term Depression at Cerebellar Molecular Layer Interneuron-Purkinje Cell Synapses in vivo in Mice
The cerebellum is sensitive to ethanol (EtOH) consumption. Chronic EtOH consumption impairs motor learning by modulating the cerebellar circuitry synaptic transmission and long-term plasticity. Under in vitro conditions, acute EtOH inhibits both parallel fiber (PF) and climbing fiber (CF) long-term depression (LTD). However, thus far it has not been investigated how chronic EtOH consumption affects sensory stimulation-evoked LTD at the molecular layer interneurons (MLIs) to the Purkinje cell (PC) synapses (MLI-PC LTD) in the cerebellar cortex of living animals. In this study, we investigated the effect of chronic EtOH consumption on facial stimulation-evoked MLI-PC LTD, using an electrophysiological technique as well as pharmacological methods, in urethane-anesthetized mice. Our results showed that facial stimulation induced MLI–PC LTD in the control mice, but it could not be induced in mice with chronic EtOH consumption (0.8 g/kg; 28 days). Blocking the cannabinoid type 1 (CB1) receptor activity with AM-251, prevented MLI-PC LTD in the control mice, but revealed a nitric oxide (NO)-dependent long-term potentiation (LTP) of MLI–PC synaptic transmission (MLI-PC LTP) in the EtOH consumption mice. Notably, with the application of a NO donor, S-nitroso-N-Acetyl-D, L-penicillamine (SNAP) alone prevented the induction of MLI–PC LTD, but a mixture of SNAP and AM-251 revealed an MLI-PC LTP in control mice. In contrast, inhibiting NO synthase (NOS) revealed the facial stimulation-induced MLI-PC LTD in EtOH consumption mice. These results indicate that long-term EtOH consumption can impair the sensory stimulation-induced MLI–PC LTD via the activation of a NO signaling pathway in the cerebellar cortex in vivo in mice. Our results suggest that the chronic EtOH exposure causes a deficit in the cerebellar motor learning function and may be involved in the impaired MLI–PC GABAergic synaptic plasticity
User-adaptive sketch-based 3D CAD model retrieval
3D CAD models are an important digital resource in the manufacturing industry. 3D CAD model retrieval has become a key technology in product lifecycle management enabling the reuse of existing design data. In this paper, we propose a new method to retrieve 3D CAD models based on 2D pen-based sketch inputs. Sketching is a common and convenient method for communicating design intent during early stages of product design, e.g., conceptual design. However, converting sketched information into precise 3D engineering models is cumbersome, and much of this effort can be avoided by reuse of existing data. To achieve this purpose, we present a user-adaptive sketch-based retrieval method in this paper. The contributions of this work are twofold. Firstly, we propose a statistical measure for CAD model retrieval: the measure is based on sketch similarity and accounts for users’ drawing habits. Secondly, for 3D CAD models in the database, we propose a sketch generation pipeline that represents each 3D CAD model by a small yet sufficient set of sketches that are perceptually similar to human drawings. User studies and experiments that demonstrate the effectiveness of the proposed method in the design process are presented
Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma
Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs
Characteristics and a comparison of the gut microbiota in two frog species at the beginning and end of hibernation
Season has been suggested to contribute to variation in the gut microbiota of animals. The complicated relationships between amphibians and their gut microbiota and how they change throughout the year require more research. Short-term and long-term hypothermic fasting of amphibians may affect gut microbiota differently; however, these changes have not been explored. In this study, the composition and characteristics of the gut microbiota of Rana amurensis and Rana dybowskii during summer, autumn (short-term fasting) and winter (long-term fasting) were studied by high-throughput Illumina sequencing. Both frog species had higher gut microbiota alpha diversity in summer than autumn and winter, but no significant variations between autumn and spring. The summer, autumn, and spring gut microbiotas of both species differed, as did the autumn and winter microbiomes. In summer, autumn and winter, the dominant phyla in the gut microbiota of both species were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. All animals have 10 OTUs (>90% of all 52 frogs). Both species had 23 OTUs (>90% of all 28 frogs) in winter, accounting for 47.49 ± 3.84% and 63.17 ± 3.69% of their relative abundance, respectively. PICRUSt2 analysis showed that the predominant functions of the gut microbiota in these two Rana were focused on carbohydrate metabolism, Global and overview maps, Glycan biosynthesis metabolism, membrane transport, and replication and repair, translation. The BugBase analysis estimated that among the seasons in the R. amurensis group, Facultatively_Anaerobic, Forms_Biofilms, Gram_Negative, Gram_Positive, Potentially_Pathogenic were significantly different. However, there was no difference for R. dybowskii. The research will reveal how the gut microbiota of amphibians adapts to environmental changes during hibernation, aid in the conservation of endangered amphibians, particularly those that hibernate, and advance microbiota research by elucidating the role of microbiota under various physiological states and environmental conditions
Systems Chemical Genetics-Based Drug Discovery: Prioritizing Agents Targeting Multiple/Reliable Disease-Associated Genes as Drug Candidates
Genetic disease genes are considered a promising source of drug targets. Most diseases are caused by more than one pathogenic factor; thus, it is reasonable to consider that chemical agents targeting multiple disease genes are more likely to have desired activities. This is supported by a comprehensive analysis on the relationships between agent activity/druggability and target genetic characteristics. The therapeutic potential of agents increases steadily with increasing number of targeted disease genes, and can be further enhanced by strengthened genetic links between targets and diseases. By using the multi-label classification models for genetics-based drug activity prediction, we provide universal tools for prioritizing drug candidates. All of the documented data and the machine-learning prediction service are available at SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug)
- …