2 research outputs found

    Combined Effects of Radiative and Evaporative Cooling on Fruit Preservation under Solar Radiation: Sunburn Resistance and Temperature Stabilization

    Full text link
    Excessive solar radiation and high temperature often cause considerable loss and waste of fruits during transportation, retail, and storage. In the current study, a natural deep eutectic solvent-based polyacrylamide/poly(vinyl alcohol) hydrogel with nanoparticles (NPs/NADES@PAAm/PVA) is developed for fruit quality protection from solar radiation and high-temperature stress by achieving the combined effect of radiative and evaporative cooling. NPs/NADES@PAAm/PVA presents an average solar reflectance of ∼0.89 and an average emittance at the atmospheric window of ∼0.90. Besides, NPs/NADES@PAAm/PVA possesses excellent flexibility, robust mechanical strength, and good swelling behavior. The fruit preservation experiments under sunlight demonstrate that the pear (Pyrus sinkiangensis) treated with NPs/NADES@PAAm/PVA can achieve an average temperature decrease of ∼15.3 °C after sun exposure compared with the blank, and its quality-related attributes, including color, total soluble solid, relative conductivity, and respiration rate, are similar to the fresh one. Multivariate data analyses, including principal component analysis and cluster analysis, further verify that the pear treated with NPs/NADES@PAAm/PVA possesses similar quality to the fresh one after sun exposure. Thus, NPs/NADES@PAAm/PVA has promising prospects for fruit transportation, retail, and storage under solar radiation in a low-operation-cost and sustainable manner

    Assembly-Induced Emission of Copper Nanoclusters: Revealing the Sensing Mechanism for Detection of Volatile Basic Nitrogen in Seafood Freshness On-Site Monitoring

    Full text link
    Total volatile basic nitrogen (TVB-N) is a vital indicator for assessing seafood freshness and edibility. Rapid on-site detection of volatile basic nitrogen (VBN) is of significant importance for food safety monitoring. In this study, highly luminescent self-assembled copper nanoclusters (Cu NCs@p-MBA), synthesized using p-mercaptobenzoic acid (p-MBA) as the ligand, were utilized for the sensitive detection of VBNs. Under acidic conditions, Cu NCs@p-MBA formed compact and well-organized nanosheets through noncovalent interactions, accompanied by intense orange fluorescence emission (651 nm). The benzene carboxylic acid part of Cu NCs@p-MBA provided the driving force for supramolecular assembly and exhibited a strong affinity for amines, particularly low-molecular-weight amines such as ammonia (NH3) and trimethylamine (TMA). The quantitative determination of NH3 and TMA showed the detection limits as low as 0.33 and 0.81 ppm, respectively. Cu NCs@p-MBA also demonstrated good responsiveness to putrescine and histamine. Through density functional theory (DFT) calculations and molecular dynamics (MD) simulations, the precise atomic structure, assembly structure, luminescent properties, and reaction processes of Cu NCs@p-MBA were studied, revealing the sensing mechanism of Cu NCs@p-MBA for highly sensitive detection of VBNs. Based on the self-assembled Cu NCs@p-MBA nanosheets, portable fluorescent labels were developed for semiquantitative, visual, and real-time monitoring of seafood freshness. Therefore, this study exemplified the high sensitivity of self-assembly induced emission (SAIE)-type Cu NCs@p-MBA for VBNs sensing, offering an efficient solution for on-site monitoring of seafood freshness
    corecore