6,163 research outputs found

    The long-lasting optical afterglow plateau of short burst GRB 130912A

    Full text link
    The short burst GRB 130912A was detected by Swift, Fermi satellites and several ground-based optical telescopes. Its X-ray light curve decayed with time normally. The optical emission, however, displayed a long term plateau, which is the longest one in current short GRB observations. In this work we examine the physical origin of the X-ray and optical emission of this peculiar event. We find that the canonical forward shock afterglow emission model can account for the X-ray and optical data self-consistently and the energy injection model that has been widely adopted to interpret the shallowly-decaying afterglow emission is not needed. We also find that the burst was born in a very-low density interstellar medium, consistent with the compact object merger model. Significant fractions of the energy of the forward shock have been given to accelerate the non-thermal electrons and amplify the magnetic fields (i.e., ϵe0.37\epsilon_{\rm e}\sim 0.37 and ϵB0.16\epsilon_{\rm B}\sim 0.16, respectively), which are much larger than those inferred in most short burst afterglow modeling and can explain why the long-lasting optical afterglow plateau is rare in short GRBs.Comment: 5 pages, 2 figure

    Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit

    Full text link
    We study a tripartite quantum system consisting of a coplanar-waveguide (CPW) resonator and a nanomechanical resonator (NAMR) connected by a flux qubit, where the flux qubit has a large detuning from both resonators. By a unitray transformation and a second-order approximation, we obtain a strong and controllable (i.e., magnetic-field-dependent) effective coupling between the NAMR and the CPW resonator. Due to the strong coupling, vacuum Rabi splitting can be observed from the voltage-fluctuation spectrum of the CPW resonator. We further study the properties of single photon transport as inferred from the reflectance or equivalently the transmittance. We show that the reflectance and the corresponding phase shift spectra both exhibit doublet of narrow spectral features due to vacuum Rabi splitting. By tuning the external magnetic field, the reflectance and the phase shift can be varied from 0 to 1 and π-\pi to π\pi, respectively. The results indicate that this hybrid quantum system can act as a quantum router.Comment: 8 pages, 6 figure
    corecore