523,952 research outputs found
Characterization of curves that lie on a geodesic sphere or on a totally geodesic hypersurface in a hyperbolic space or in a sphere
The consideration of the so-called rotation minimizing frames allows for a
simple and elegant characterization of plane and spherical curves in Euclidean
space via a linear equation relating the coefficients that dictate the frame
motion. In this work, we extend these investigations to characterize curves
that lie on a geodesic sphere or totally geodesic hypersurface in a Riemannian
manifold of constant curvature. Using that geodesic spherical curves are normal
curves, i.e., they are the image of an Euclidean spherical curve under the
exponential map, we are able to characterize geodesic spherical curves in
hyperbolic spaces and spheres through a non-homogeneous linear equation.
Finally, we also show that curves on totally geodesic hypersurfaces, which play
the role of hyperplanes in Riemannian geometry, should be characterized by a
homogeneous linear equation. In short, our results give interesting and
significant similarities between hyperbolic, spherical, and Euclidean
geometries.Comment: 15 pages, 3 figures; comments are welcom
Characterization of manifolds of constant curvature by spherical curves
It is known that the so-called rotation minimizing (RM) frames allow for a
simple and elegant characterization of geodesic spherical curves in Euclidean,
hyperbolic, and spherical spaces through a certain linear equation involving
the coefficients that dictate the RM frame motion (da Silva, da Silva in
Mediterr J Math 15:70, 2018). Here, we shall prove the converse, i.e., we show
that if all geodesic spherical curves on a Riemannian manifold are
characterized by a certain linear equation, then all the geodesic spheres with
a sufficiently small radius are totally umbilical and, consequently, the given
manifold has constant sectional curvature. We also furnish two other
characterizations in terms of (i) an inequality involving the mean curvature of
a geodesic sphere and the curvature function of their curves and (ii) the
vanishing of the total torsion of closed spherical curves in the case of
three-dimensional manifolds. Finally, we also show that the same results are
valid for semi-Riemannian manifolds of constant sectional curvature.Comment: To appear in Annali di Matematica Pura ed Applicat
Anisotropic simplicial minisuperspace model
The computation of the simplicial minisuperspace wavefunction in the case of
anisotropic universes with a scalar matter field predicts the existence of a
large classical Lorentzian universe like our own at late timesComment: 19 pages, Latex, 6 figure
Self-Adaptive Role-Based Access Control for Business Processes
© 2017 IEEE. We present an approach for dynamically reconfiguring the role-based access control (RBAC) of information systems running business processes, to protect them against insider threats. The new approach uses business process execution traces and stochastic model checking to establish confidence intervals for key measurable attributes of user behaviour, and thus to identify and adaptively demote users who misuse their access permissions maliciously or accidentally. We implemented and evaluated the approach and its policy specification formalism for a real IT support business process, showing their ability to express and apply a broad range of self-adaptive RBAC policies
- …