17 research outputs found
Hypothalamic Endoplasmic Reticulum Stress Of Overtrained Mice After Recovery
knowing the relationship between endoplasmic reticulum (ER) stress and inflammation and based on the fact that downhill running-based overtraining (OT) model increases hypothalamus levels of some pro-inflammatory cytokines, we verified the effects of three OT protocols on the levels of BiP, pIRE-1 (Ser734), pPERK (Thr981), pelF2alpha (Ser52), ATF-6 and GRP-94 proteins in the mouse hypothalamus after two weeks of recovery. Methods: the mice were randomized into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR) groups. After 2-week total recovery period (i.e., week 10), hypothalamus was removed and used for immunoblotting. Results: The OTR/down group exhibited high levels of BiP and ATF6. The other OT protocols showed higher levels of pPERK (Th981) and pelf-2alpha (Ser52) when compared with the CT group. Conclusion: The current results suggest that after a 2-week total recovery period, the overtrained groups increased partially their ER stress protein levels, but without hypothalamic inflammation, which characterizes a physiological condition related to an adaptation mechanism.2
Serum and plasma hormonal concentrations are sensitive to periods of intensity and volume of soccer training
Objectifs Ăvaluer les effets dâun programme dâentraĂźnement de 12 semaines sur les concentrations hormonales et la performance physiologique des joueurs de football. Sujets et mĂ©thodes Dix-huit sujets ont Ă©tĂ© Ă©valuĂ©s au commencement (T1), au milieu (T2) et Ă la fin (T3) de la saison. Leur sang a Ă©tĂ© recueilli pour lâanalyse du cortisol, testostĂ©rone, rapport testostĂ©rone/cortisol, Ă©pinĂ©phrine et norĂ©pinĂ©phrine. Les paramĂštres anaĂ©robie lactique/alactique et le seuil anaĂ©robie ont Ă©tĂ© utilisĂ©s comme mesures de performance physiologique. RĂ©sultats Tandis que les niveaux de cortisol Ă©taient plus Ă©levĂ©s en T2 et T3 comparĂ©s Ă ceux de T1 (p †0,05), les valeurs de testostĂ©rone et les rapports testostĂ©rone/cortisol Ă©taient significativement moins Ă©levĂ©s en T2 et T3 comparĂ©s Ă ceux de T1 (p †0,05). Les concentrations de norĂ©pinĂ©phrine ont augmentĂ© de T1 Ă T2 et T3 (p †0,05). En plus, alors quâil y a eu une baisse significative des paramĂštres de la performance anaĂ©robie alactique en T2 et T3 comparĂ©s Ă ceux de T1 (p †0,05), le seuil anaĂ©robie sâest Ă©levĂ© en T2 et T3 comparĂ© Ă T1 (p †0,05). En rĂ©sumĂ©, nous avons constatĂ© que les niveaux de NE peuvent ĂȘtre utilisĂ©s comme marqueurs des variations de volume et intensitĂ© dâentraĂźnement. En plus, les altĂ©rations dans les niveaux dâhormones sĂ©lectionnĂ©s dans cette Ă©tude nâont pas Ă©tĂ© associĂ©es Ă des rĂ©ponses nĂ©gatives des performances physiologiques.Mots clĂ©s Cortisol; TestostĂ©rone; TestostĂ©rone/cortisol rapport; CatĂ©cholamines; Football
Aerobic And Anaerobic Performances In Tethered Swimming
The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake (ÌVO2MAX) and force associated with the ÌVO2MAX (i ÌVO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ÌVO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ÌVO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ÌVO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming. © Georg Thieme Verlag KG Stuttgart . New York.348712719Almeida, A.G., Cunha, F.A.P., Rosa, M.R.R., Kokubun, E., Critical force in tethered swimming: Relationship with blood lactate and oxygen uptake (2004) Rev Bras CiĂȘn Esporte, 24, pp. 47-59Billat, V.L., Morton, R.H., Blondel, N., Berthoin, S., Bocquet, V., Koralsztein, J.P., Barstow, T.J., Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake (2000) European Journal of Applied Physiology, 82 (3), pp. 178-187Bishop, D., Jenkins, D.G., The influence of resistance training on the critical power function and time to fatigue at critical power (1996) Aust J Sci Med Sport, 28, pp. 101-110Bland, J.M., Altman, D.G., Statistical methods for assessing agreement between two methods of clinical measurement (1986) Lancet, 1 (8476), pp. 307-310. , PII S0140673686908378Blondel, N., Berthoin, S., Billat, V., Lensel, G., Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity (2001) International Journal of Sports Medicine, 22 (1), pp. 27-33. , DOI 10.1055/s-2001-11357Bonen, A., Wilson, B.A., Yarkony, M., Belcastro, A.N., Maximal oxygen uptake during free, tethered, and flume swimming (1980) Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 48 (2), pp. 232-235Bosquet, L., Delhors, P.R., Duchene, A., Dupont, G., Leger, L., Anaerobic running capacity determined from a 3-parameter systems model: Relationship with other anaerobic indices and with running performance in the 800 m-run (2007) International Journal of Sports Medicine, 28 (6), pp. 495-500. , DOI 10.1055/s-2006-924516Costill, D.L., Kovaleski, J., Porter, D., Energy expenditure during front crawl swimming: Predicting success in middle-distance events (1985) International Journal of Sports Medicine, 6 (5), pp. 266-270Dekerle, J., Brickley, G., Alberty, M., Pelayo, P., Characterising the slope of the distance-time relationship in swimming (2010) J Sci Med Sport, 13, pp. 365-370Dekerle, J., Brickley, G., Hammond, A.J.P., Pringle, J.S.M., Carter, H., Validity of the two-parameter model in estimating the anaerobic work capacity (2006) European Journal of Applied Physiology, 96 (3), pp. 257-264. , DOI 10.1007/s00421-005-0074-8Dekerle, J., Pelayo, P., Clipet, B., Depretz, S., Lefevre, T., Sidney, M., Critical swimming speed does not represent the speed at maximal lactate steady state (2005) International Journal of Sports Medicine, 26 (7), pp. 524-530. , DOI 10.1055/s-2004-821227Dekerle, J., Sidney, M., Hespel, J.M., Pelayo, P., Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances (2002) International Journal of Sports Medicine, 23 (2), pp. 93-98. , DOI 10.1055/s-2002-20125Di Prampero, P.E., Dekerle, J., Capelli, C., Zamparo, P., The critical velocity in swimming (2008) European Journal of Applied Physiology, 102 (2), pp. 165-171. , DOI 10.1007/s00421-007-0569-6Eckerson, J.M., Bull, A.A., Moore, G.A., Effect of thirty days of creatine supplementation with phosphate salts on anaerobic working capacity and body weight in men (2008) J Strength Cond Res, 22, pp. 826-832Ferguson, C., Whipp, B.J., Cathcart, A.J., Rossiter, H.B., Turner, A.P., Ward, S.A., Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance (2007) Journal of Applied Physiology, 103 (3), pp. 812-822. , http://jap.physiology.org/cgi/reprint/103/3/812, DOI 10.1152/japplphysiol.01410.2006Fernandes, R.J., Cardoso, C.S., Soares, S.M., Ascensao, A., Colaco, P.J., Vilas-Boas, J.P., Time Limit and VO2 Slow Component at Intensities Corresponding to VO2max in Swimmers (2003) International Journal of Sports Medicine, 24 (8), pp. 576-581. , DOI 10.1055/s-2003-43274Fernandes, R.J., Keskinen, K.L., Colaco, P., Querido, A.J., Machado, L.J., Morais, P.A., Novais, D.Q., Vilas Boas, J.P., Time limit at VO2max velocity in elite crawl swimmers (2008) International Journal of Sports Medicine, 29 (2), pp. 145-150. , DOI 10.1055/s-2007-965113Fukuba, Y., Miura, A., Endoi, M., Kan, A., Yanagawa, K., Whipp, B.J., The curvature constant parameter of the power-duration curve for varied-power exercise (2003) Medicine and Science in Sports and Exercise, 35 (8), pp. 1413-1418. , DOI 10.1249/01.MSS.0000079047.84364.70Green, S., Dawson, B.T., The Y-intercept of the maximal work-duration regression and field tests of anaerobic capacity in cyclists (1996) International Journal of Sports Medicine, 17 (1), pp. 41-47. , DOI 10.1055/s-2007-972806Harriss, D.J., Atkinson, G., Update - Ethical Standards in Sport and Exercise Science Research (2011) J Sports Med, 32, pp. 819-821Hill, D.W., Smith, J.C., A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept (1994) Journal of Sports Medicine and Physical Fitness, 34 (1), pp. 23-37Ikuta, Y., Wakayoshi, K., Nomura, T., Determination and validity of critical swimming force as performance index in tethered swimming (1996) Biomech Med Swimming, 7, pp. 146-151Jenkins, D.G., Quigley, B.M., The y-intercept of the critical power functions as a measure of anaerobic work capacity (1991) Ergonomics, 34, pp. 13-22Jones, A.M., Wilkerson, D.P., DiMenna, F., Fulford, J., Poole, D.C., Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS (2008) American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294 (2), pp. R585-R593. , http://ajpregu.physiology.org/cgi/reprint/294/2/R585, DOI 10.1152/ajpregu.00731.2007Jones, A.M., Vanhatal, A., Burnle, M., Morto, R.H., Poole, D.C., Critical Power: Implications for the determination of VO2 max and exercise tolerance (2010) Med Sci Sports Exerc, 42, pp. 1876-1890Kendall, K.L., Smith, A.E., Graef, J.L., Fukuda, D.H., Moon, J.R., Beck, T.W., Cramer, J.T., Stout, J.R., Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men (2009) J Strength Cond Res, 23, pp. 1663-1669Kuipers, H., Verstappen, F.T.J., Keizer, H.A., Variability of aerobic performance in the laboratory and its physiologic correlates (1985) International Journal of Sports Medicine, 6 (4), pp. 197-201Leclair, E., Borel, B., Thevenet, D., Baquet, G., Mucci, P., Berthoin, S., Assessment of child-specific aerobic fitness and anaerobic capacity by the use of the power-time relationships constants (2010) Pediatr Exerc Sci, 22, pp. 454-466Martin, R.B., Yeater, R.A., White, M.K., A simple analytical model for the crawl stroke (1981) Journal of Biomechanics, 14 (8), pp. 539-548. , DOI 10.1016/0021-9290(81)90003-8Matsumoto, I., Araki, H., Tsuda, K., Odajima, H., Nishima, S., Higaki, Y., Tanaka, H., Shindo, M., Effects of swimming training on aerobic capacity and exercise induced bronchoconstriction in children with bronchial asthma (1999) Thorax, 54 (3), pp. 196-201Miura, A., Endo, M., Sato, H., Sato, H., Barstow, T.J., Fukuba, Y., Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans (2002) European Journal of Applied Physiology, 87 (3), pp. 238-244. , DOI 10.1007/s00421-002-0623-3Monod, H., Scherrer, J., The work capacity of a synergic muscular group (1965) Ergonomics, 8, pp. 329-337Morouço, P., Keskinen, K.L., Vilas-Boas, J.P., Fernandes, R.J., Relationship between tethered forces and the four swimming techniques performance (2011) J Appl Biomech, 27, pp. 161-169Morton, R.H., The critical power and related whole-body bioenergetic models (2006) Eur J Appl Physiol, 96, pp. 339-354Papoti, M., Balikian, J.P., Denadai, B.S., Lima, M.C.S., Silva, A.S.R., Santhiago, V., Gobatto, C.A., Adaptation of the VO2000 gas analiser's mask to mensuration of cardiorespiratory parameters in swimming (2007) Rev Bras Med Esporte, 13, pp. 190-194Papoti, M., Martins, L.E.B., Cunha, S.A., Zagatto, A.M., Gobatto, C.A., Effects of taper on swimming force and Swimmer performance after an experimental ten-week training program (2007) Strength Cond Res, 21, pp. 538-542Papoti, M., Zagatto, A.M., Barbosa De Freitas Jr., P., Cunha, S.A., Barreto Martins, L.E., Gobatto, C.A., Use of the y-intercept in the evaluation of the anaerobic fitness and performance prediction of trained swimmers (2005) Revista Brasileira de Medicina do Esporte, 11 (2), pp. 126-130Perandini, L.A.B., Okuno, N.M., Kokubun, E., Nakamura, F.Y., Correlation between critical force and critical velocity and their respective stroke rates (2007) Rev Bras Cineantropom Desempenho Hum, 8, pp. 59-65Raglin, J.S., Koceja, D.M., Stager, J.M., Harms, C.A., Mood, neuromuscular function, and performance during training in female swimmers (1996) Medicine and Science in Sports and Exercise, 28 (3), pp. 372-377. , DOI 10.1097/00005768-199603000-00013Soares, S., Vilar, S., Bernardo, C., Campos, A., Fernandes, R., Vilas-Boas, J.P., Using data from the critical velocity regression line for the estimation of anaerobic capacity in infant and adult swimmers (2003) Portuguese J Sport Sci, 3, pp. 108-110Takahashi, S., Wakayoshi, K., Hayashi, A., Sakaguchi, Y., Kitagawa, K., A method for determining critical swimming velocity (2009) Int J Sports Med, 30, pp. 119-123Taylor, S.A., Batterham, A.M., The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise (2002) European Journal of Applied Physiology, 87 (1), pp. 43-49. , DOI 10.1007/s00421-002-0586-4Toussaint, H.M., Wakayoshi, K., Hollander, A.P., Ogita, F., Simulated front crawl swimming performance related to critical speed and critical power (1998) Medicine and Science in Sports and Exercise, 30 (1), pp. 144-151. , DOI 10.1097/00005768-199801000-00020West, S.A., Drummond, M.J., VanNess, J.M., Ciccolella, M.E., Blood lactate and metabolic responses to controlled frequency breathing during graded swimming (2005) Journal of Strength and Conditioning Research, 19 (4), pp. 772-776. , DOI 10.1519/R-14543.1Williams, C.A., Dekerle, J., McGawley, K., Berthoin, S., Carter, H., Critical power in adolescent boys and girls - An exploratory study (2008) Appl Physiol Nutr Metab, 33, pp. 1105-1111Yeater, R.A., Martin, R.B., White, M.K., Gilson, K.H., Tethered swimming forces in the crawl breast and back strokes and their relationship to competitive performance (1981) Journal of Biomechanics, 14 (8), pp. 527-537. , DOI 10.1016/0021-9290(81)90002-
Nonfunctional Overreaching Leads To Inflammation And Myostatin Upregulation In Swiss Mice
The aims of the this study were a) to verify whether the performance decrease induced by nonfunctional overreaching (NFOR) is linked to high concentrations of cytokines in serum, skeletal muscles and liver; b) to verify muscle myostatin adaptation to NFOR; c) to verify the effects of chronic glucose supplementation on the parameters mentioned above. Mice were divided into control (C), trained (TR), overtrained (OTR) and supplemented overtrained (OTR+S). The incremental load test (ILT) and exhaustive test (ET) were used to measure performances before and after exercise protocols. 24 h after ET, muscles and liver were removed and stored at -80°C for subsequent measurements. Total blood was collected from decapitation for subsequent determination of cytokine concentrations. Generally, OTR and OTR+S presented higher contents of IL-6, TNF-alpha, GLUT-4 and myostatin in muscle samples compared to C and TR. Glucose supplementation attenuated the high contents of IL-6, TNF-alpha and IL-15 in liver, and of IL-6 in serum. In summary, NFOR led to low-grade chronic inflammation and myostatin upregulation. © Georg Thieme Verlag KG Stuttgart · New York.352139146Adser, H., Wojtaszewski, J.F., Jakobsen, A.H., Kiilerich, K., Hidalgo, J., Pilegaard, H., Interleukin-6 modifies mRNA expression in mouse skeletal muscle (2011) Acta Physiol (Oxf), 202, pp. 165-173Allen, D.L., Hittel, D.S., McPherron, A.C., Expression and function of myostatin in obesity, diabetes, and exercise adaptation (2011) Med Sci Sports Exerc, 43, pp. 1828-1835Armstrong, R.B., Phelps, R.O., Muscle fiber type composition of the rat hindlimb (1984) American Journal of Anatomy, 171 (3), pp. 259-272. , DOI 10.1002/aja.1001710303Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254Carey, A.L., Steinberg, G.R., Macaulay, S.L., Thomas, W.G., Holmes, A.G., Ramm, G., Prelovsek, O., Febbraio, M.A., Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase (2006) Diabetes, 55 (10), pp. 2688-2697. , http://diabetes.diabetesjournals.org/cgi/reprint/55/10/2688, DOI 10.2337/db05-1404Carmichael, M.D., Davis, J.M., Murphy, E.A., Carson, J.A., Van Rooijen, N., Mayer, E., Ghaffar, A., Role of brain macrophages on IL-1beta and fatigue following eccentric exercise-induced muscle damage (2010) Brain Behav Immun, 24, pp. 564-568Chen, T.C., Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity (2003) European Journal of Applied Physiology, 89 (2), pp. 115-121Chen, T.C., Hsieh, S.S., Effects of a 7-day eccentric training period on muscle damage and inflammation (2001) Medicine and Science in Sports and Exercise, 33 (10), pp. 1732-1738Costa, A., Dalloul, H., Hegyesi, H., Apor, P., Csende, Z., Racz, L., Vaczi, M., Tihanyi, J., Impact of repeated bouts of eccentric exercise on myogenic gene expression (2007) European Journal of Applied Physiology, 101 (4), pp. 427-436. , DOI 10.1007/s00421-007-0510-zDavis, J.M., Murphy, E.A., Carmichael, M.D., Zielinski, M.R., Groschwitz, C.M., Brown, A.S., Gangemi, J.D., Mayer, E.P., Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage (2007) American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 292 (6), pp. R2168-R2173. , http://ajpregu.physiology.org/cgi/reprint/292/6/R2168, DOI 10.1152/ajpregu.00858.2006Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugar and related substances (1956) Anal Chem, 28, p. 6Ferreira, J.C.B., Rolim, N.P.L., Bartholomeu, J.B., Gobatto, C.A., Kokubun, E., Brum, P.C., Maximal lactate steady state in running mice: Effect of exercise training (2007) Clinical and Experimental Pharmacology and Physiology, 34 (8), pp. 760-765. , DOI 10.1111/j.1440-1681.2007.04635.xFujimoto, E., Machida, S., Higuchi, M., Tabata, I., Effects of nonexhaustive bouts of high-intensity intermittent swimming training on GLUT-4 expression in rat skeletal muscle (2010) J Physiol Sci, 60, pp. 95-101Halson, S.L., Jeukendrup, A.E., Does overtraining exist? An analysis of overreaching and overtraining research (2004) Sports Medicine, 34 (14), pp. 967-981. , DOI 10.2165/00007256-200434140-00003Harriss, D.J., Atkinson, G., Update - Ethical standards in sport and exercise science research (2011) Int J Sports Med, 32, pp. 819-821Hittel, D.S., Axelson, M., Sarna, N., Shearer, J., Huffman, K.M., Kraus, W.E., Myostatin decreases with aerobic exercise and associates with insulin resistance (2010) Med Sci Sports Exerc, 42, pp. 2023-2029Hohl, R., Ferraresso, R.L., De Oliveira, R.B., Lucco, R., Brenzikofer, R., De Macedo, D.V., Development and characterization of an overtraining animal model (2009) Med Sci Sports Exerc, 41, pp. 1155-1163Kawanishi, N., Yano, H., Mizokami, T., Takahashi, M., Oyanagi, E., Suzuki, K., Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice (2012) Brain Behav Immun, 26, pp. 931-941Keller, C., Steensberg, A., Hansen, A.K., Fischer, C.P., Plomgaard, P., Pedersen, B.K., Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle (2005) Journal of Applied Physiology, 99 (6), pp. 2075-2079. , DOI 10.1152/japplphysiol.00590.2005Kelly, M., Gauthier, M.S., Saha, A.K., Ruderman, N.B., Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: Association with changes in cAMP, energy state, and endogenous fuel mobilization (2009) Diabetes, 58, pp. 1953-1960Li, T.-L., Gleeson, M., The effect of single and repeated bouts of prolonged cycling on leukocyte redistribution, neutrophil degranulation, IL-6, and plasma stress hormone responses (2004) International Journal of Sport Nutrition and Exercise Metabolism, 14 (5), pp. 501-516Matsakas, A., Bozzo, C., Cacciani, N., Caliaro, F., Reggiani, C., Mascarello, F., Patruno, M., Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats (2006) Experimental Physiology, 91 (6), pp. 983-994. , DOI 10.1113/expphysiol.2006.033571Meeusen, R., Nederhof, E., Buyse, L., Roelands, B., De Schutter, G., Piacentini, M.F., Diagnosing overtraining in athletes using the two-bout exercise protocol (2010) Br J Sports Med, 44, pp. 642-648Meier, P., Renga, M., Hoppeler, H., Baum, O., The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice (2012) Cell Biochem Funct, , 10.1002/cbf.2859Moon, M.K., Cho, B.J., Lee, Y.J., Choi, S.H., Lim, S., Park, K.S., Park, Y.J., Jang, H.C., The effects of chronic exercise on the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha are different with age (2012) Appl Physiol Nutr Metab, 37, pp. 631-636Nieman, D.C., Davis, J.M., Henson, D.A., Gross, S.J., Dumke, C.L., Utter, A.C., Vinci, D.M., Triplett, N.T., Muscle cytokine mRNA changes after 2.5 h of cycling: Influence of carbohydrate (2005) Medicine and Science in Sports and Exercise, 37 (8), pp. 1283-1290. , DOI 10.1249/01.mss.0000175054.99588.b1Nosaka, K., Newton, M., Repeated eccentric exercise bouts do not exacerbate muscle damage and repair (2002) J Strength Cond Res, 16, pp. 117-122Pedersen, B.K., Muscular interleukin-6 and its role as an energy sensor (2012) Med Sci Sports Exerc, 44, pp. 392-396Pedersen, B.K., Febbraio, M.A., Muscles, exercise and obesity: Skeletal muscle as a secretory organ (2012) Nat Rev Endocrinol, 8, pp. 457-465Pedersen, B.K.F.M., Muscle as an endocrine organ: Focus on muscle-derived interleukin-6 (2008) Physiol Rev, 88, p. 27Pederson, B.A., Cope, C.M., Schroeder, J.M., Smith, M.W., Irimia, J.M., Thurberg, B.L., DePaoli-Roach, A.A., Roach, P.J., Exercise capacity of mice genetically lacking muscle glycogen synthase: In mice, muscle glycogen is not essential for exercise (2005) Journal of Biological Chemistry, 280 (17), pp. 17260-17265. , DOI 10.1074/jbc.M410448200Pereira, B.C., Filho, L.A., Alves, G.F., Pauli, J.R., Ropelle, E.R., Souza, C.T., Cintra, D.E., Silva, A.S., A new overtraining protocol for mice based on downhill running sessions (2012) Clin Exp Pharmacol Physiol, 39, pp. 793-798Robson, P.J., Elucidating the unexplained underperformance syndrome in endurance athletes: The interleukin-6 hypothesis (2003) Sports Medicine, 33 (10), pp. 771-781. , DOI 10.2165/00007256-200333100-00004Ross, R., Atherosclerosis - An inflammatory disease (1999) New England Journal of Medicine, 340 (2), pp. 115-126. , DOI 10.1056/NEJM199901143400207Sano, A., Koshinaka, K., Abe, N., Morifuji, M., Koga, J., Kawasaki, E., Kawanaka, K., The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle (2012) J Physiol Sci, 62, pp. 1-9Smith, L.L., Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? (2000) Medicine and Science in Sports and Exercise, 32 (2), pp. 317-331Starkie, R., Ostrowski, S.R., Jauffred, S., Febbraio, M., Pedersen, B.K., Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans (2003) FASEB Journal: Official Publication of the Federation of American Societies for Exp Biol, 17, pp. 884-886Steensberg, A., Febbraio, M.A., Osada, T., Schjerling, P., Van Hall, G., Saltin, B., Pedersen, B.K., Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content (2001) Journal of Physiology, 537 (2), pp. 633-639. , DOI 10.1111/j.1469-7793.2001.00633.xSuzuki, A., McCall, S., Choi, S.S., Sicklick, J.K., Huang, J., Qi, Y., Zdanowicz, M., Diehl, A.M., Interleukin-15 increases hepatic regenerative activity (2006) Journal of Hepatology, 45 (3), pp. 410-418. , DOI 10.1016/j.jhep.2006.04.008, PII S0168827806002418Xiao, W., Chen, P., Dong, J., Effects of overtraining on skeletal muscle growth and gene expression (2012) Int J Sports Med, 33, pp. 846-853Zhao, B., Wall, R.J., Yang, J., Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance (2005) Biochemical and Biophysical Research Communications, 337 (1), pp. 248-255. , DOI 10.1016/j.bbrc.2005.09.044, PII S0006291X0502037
Endurance Exercise Training Increases Appl1 Expression And Improves Insulin Signaling In The Hepatic Tissue Of Diet-induced Obese Mice, Independently Of Weight Loss
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3ÎČ) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1α association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3ÎČ phosphorylation levels and glycogen content at 24h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. © 2011 Wiley Periodicals, Inc.227729172926Aoyama, H., Daitoku, H., Fukamizu, A., Nutrient control of phosphorylation and translocation of Foxo1 in C57BL/6 and db/db mice (2006) Int J Mol Med, 18, pp. 433-439Barthel, A., Schmoll, D., KrĂŒger, K.D., Bahrenberg, G., Walther, R., Roth, R.A., Joost, H.G., Differential regulation of endogenous glucose-6-phosphatase and phosphoenol pyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE hepatoma cells (2001) Biochem Biophys Res Commun, 285, pp. 897-902Bonora, E., Moghetti, P., Zancanaro, C., Cigolini, M., Querena, M., Cacciatori, V., Corgnati, A., Muggeo, M., Estimates of in vivo insulin action in man: Comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies (1989) J Clin Endocrinol Metab, 68, pp. 374-378Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254Cheng, K.K., Iglesias, M.A., Lam, K.S.L., Wang, Y., Sweeney, G., Zhu, W., Vanhoutte, P.M., Xu, A., APPL1 potentiates insulin-mediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice (2009) Cell Metab, 9, pp. 417-427Cheng, Z., Guo, S., Copps, K., Dong, X., Kollipara, R., Rodgers, J.T., Depinho, R.A., White, M.F., Foxo1 integrates insulin signaling with mitochondrial function in the liver (2009) Nat Med, 15, pp. 1307-1311Cho, H., Mu, J., Kim, J.K., Thorvaldsen, J.L., Chu, Q., Crenshaw, E.B., Kaestner, K.H., Birnbaum, M.J., Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta) (2001) Science, 292, pp. 1728-1731Cintra, D.E., Pauli, J.R., AraĂșjo, E.P., Moraes, J.C., de Souza, C.T., Milanski, M., Morari, J., Velloso, L.A., Interleukin-10 is a protective factor against diet-induced insulin resistance in liver (2008) J Hepatol, 48, pp. 628-637Da Silva, A.S., Pauli, J.R., Ropelle, E.R., Oliveira, A.G., Cintra, D.E., De Souza, C.T., Velloso, L.A., Saad, M.J., Exercise intensity, inflammatory signaling, and insulin resistance in obese rats (2010) Med Sci Sports Exerc, 42, pp. 2180-2188De Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Saad, M.J., Velloso, L.A., Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus (2005) Endocrinology, 146, pp. 4189-4191Dentin, R., Liu, Y., Koo, S.H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., Montminy, M., Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2 (2007) Nature, 449, pp. 366-369Du, K., Herzig, S., Kulkarni, R.N., Montminy, M., TRB3: A tribbles homolog that inhibits Akt/PKB activation by insulin in liver (2003) Science, 300, pp. 1574-1577Hegedus, Z., Czibula, A., Kiss-Toth, E., Tribbles: A family of kinase-likeproteins with potent signalling regulatory function (2007) Cell Signal, 19, pp. 238-250Heled, Y., Shapiro, Y., Shani, Y., Moran, D.S., Langzam, L., Barash, V., Sampson, S.R., Meyerovitch, J., Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus (2004) Metabolism, 53, pp. 836-841Herzig, S., Long, F., Jhala, U.S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Montminy, M., CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 (2001) Nature, 413, pp. 179-183Hoene, M., Lehmann, R., Hennige, A.M., Pohl, A.K., HĂ€ring, H.U., Schleicher, E.D., Weigert, C., Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise (2009) J Physiol, 587, pp. 241-252Houmard, J.A., Shaw, C.D., Hickey, M.S., Tanner, C.J., Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in human skeletal muscle (1999) Am J Physiol, 277, pp. E1055-E1060Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685Li, X., Monks, B., Ge, Q., Birnbaum, M.J., Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1a transcription coactivator (2007) Nature, 447, pp. 1012-1016Lima, F.A., Ropelle, E.R., Pauli, J.R., Cintra, D.E., Frederico, M.J.S., Pinho, R.A., Velloso, L.A., De Souza, C.T., Acute exercise reduces insulin resistance-induced TRB3 expression and amelioration of the hepatic production of glucose in the liver of diabetic mice (2009) J Cell Physiol, 221, pp. 92-97Matsushima, R., Harada, N., Webster, N.J., Tsutsumi, Y.M., Nakaya, Y., Effect of TRB3 on insulin and nutrient stimulated hepatic p70 S6 kinase activity (2006) J Biol Chem, 281, pp. 29719-29729Michael, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I., Magnuson, M.A., Kanh, C.R., Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction (2000) Mol Cell, 6, pp. 87-97Mikines, K.J., Sonne, B., Farrell, P.A., Tronier, B., Galbo, H., Effect of physical exercise on sensitivity and responsiveness to insulin in humans (1988) Am J Physiol, 254, pp. E248-E259Nakae, J., Park, B.C., Accili, D., Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway (1999) J Biol Chem, 274, pp. 15982-15985O'Gorman, D.J., Karlsson, H.K., McQuaid, S., Yousif, O., Rahman, Y., Gasparro, D., Glund, S., Nolan, J.J., Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes (2006) Diabetologia, 49, pp. 2983-2992Park, E.J., Lee, J.H., Yu, G.Y., He, G., Ali, S.R., Holzer, R.G., Osterreicher, C.H., Karin, M., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression (2010) Cell, 140, pp. 197-208Perseghin, G., Price, T.B., Petersen, K.F., Roden, M., Cline, G.W., Gerow, K., Rothman, D.L., Shulman, G.I., Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects (1996) N Engl J Med, 335, pp. 1357-1362Pimenta, W.P., Saad, M.J., Paccola, G.M., Piccinato, C.E., Foss, M.C., Effect of oral glucose on peripheral muscle fuel metabolism in fasted men (1989) Braz J Med Biol Res, 22, pp. 465-476Postic, C., Dentin, R., Girard, J., Role of the liver in the control of carbohydrate and lipid homeostasis (2004) Diabet Metab, 30, pp. 398-408Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., Kitamura, Y., Spiegelman, B.M., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction (2003) Nature, 423, pp. 550-555Rhee, J., Inoue, Y., Yoon, J.C., Puigserver, P., Fan, M., Gonzalez, F.J., Spiegelman, B.M., Regulation of hepatic fasting response by PPARÎł coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis (2003) Proc Natl Acad Sci USA, 100, pp. 4012-4017Richter, E.A., Mikines, K.J., Galbo, H., Kiens, B., Effect of exercise on insulin action in muscle (1989) J Appl Physiol, 66, pp. 876-885Röckl, K.S., Witczak, C.A., Goodyear, L.J., Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise (2008) IUBMB Life, 60, pp. 145-153Ropelle, E.R., Pauli, J.R., Cintra, D.E., Frederico, M.J., de Pinho, R.A., Velloso, L.A., De Souza, C.T., Acute exercise modulates the Foxo1/PGC-1alpha pathway in the liver of diet-induced obesity rats (2009) J Physiol, 587, pp. 2069-2076Schenck, A., Goto-Silva, L., Collinet, C., Rhinn, M., Giner, A., Habermann, B., Brand, M., Zerial, M., The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development (2008) Cell, 133, pp. 486-497Scott, A.M., Atwater, I., Rojas, E., A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans (1981) Diabetologia, 21, pp. 470-475Taniguchi, C.M., Kondo, T., Sajan, M., Luo, J., Bronson, R., Asano, T., Farese, R., Kahn, C.R., Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta (2006) Cell Metab, 3, pp. 343-353Xu, H., Dembski, M., Yang, Q., Yang, D., Moriarty, A., Tayber, O., Chen, H., Tartaglia, L.A., Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance (2003) J Biol Chem, 278, pp. 30187-30192Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 (2001) Nature, 413, pp. 131-13
Acute Exercise Decreases Ptp-1b Protein Level And Improves Insulin Signaling In The Liver Of Old Rats
It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRÎČ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRÎČ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. © 2013 Moura et al; licensee BioMed Central Ltd.101Reaven, G.M., Reaven, E.P., Age, glucose intolerance, and non-insulin dependent diabetes mellitus (1985) J Am Geriatr Soc, 33, pp. 286-290Davidson, M.B., The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly (1979) Metabolism, 28, pp. 688-705. , 10.1016/0026-0495(79)90024-6, 377005DeFronzo, R.A., Glucose intolerance and aging (1981) Diabetes Care, 4, pp. 493-501. , 10.2337/diacare.4.4.493, 7049632Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction (2003) Nature, 423 (6939), pp. 550-555. , 10.1038/nature01667, 12754525Ropelle, E.R., Pauli, J.R., Cintra, D.E., Frederico, M.J., de Pinho, R.A., Velloso, L.A., De Souza, C.T., Acute exercise modulates the Foxo1/PGC-1alpha pathway in the liver of diet induced obesity rats (2009) J Physiol, 587, pp. 2069-2076. , 10.1113/jphysiol.2008.164202, 2689344, 19273580Marinho, R., Ropelle, E.R., Cintra, D.E., De Souza, C.T., Da Silva, A.S., Bertoli, F.C., Colantonio, E., Pauli, J.R., Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss (2012) J Cell Physiol, 227 (7), pp. 2917-2926. , 10.1002/jcp.23037, 21938726Johnson, T.O., Ermolieff, J., Jirousek, M.R., Protein tyrosine phosphatase 1B inhibitors for diabetes (2002) Nat Rev Drug Discovery, 1, pp. 696-709Kenner, K.A., Anyanwu, E., Olefsky, J.M., Kusari, J., Protein-tyrosine-phosphatase 1B is a negative regulator of insulin- and insulin-like growth-factor-I-stimulated signaling (1996) J Biol Chem, 271, pp. 9810-9816Byon, J.C., Kusari, A.B., Kusari, J., Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction (1998) Mol Cell Biochem, 182, pp. 101-108. , 10.1023/A:1006868409841, 9609119Goldstein, B.J., Bittner-Kowalczyk, A., White, M.F., Harbeck, M., Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the grb2 adaptor protein (2000) J Biol Chem, 275 (6), pp. 4283-4289. , 10.1074/jbc.275.6.4283, 10660596Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene (1999) Science, 283 (5407), pp. 1544-1548. , 10.1126/science.283.5407.1544, 10066179Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice (2000) Mol Cell Biol, 20 (15), pp. 5479-5489. , 10.1128/MCB.20.15.5479-5489.2000, 85999, 10891488GonzĂĄlez-RodrĂguez, A., MĂĄs-Gutierrez, J.A., Mirasierra, M., Fernandez-PĂ©rez, A., Lee, Y.J., Ko, H.J., Kim, J.K., Valverde, A.M., Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging (2012) Aging Cell, 11 (2), pp. 284-296. , 10.1111/j.1474-9726.2011.00786.x, 22221695Hirata, A.E., Alvarez-Rojas, F., Carvalheira, J.B., Carvalho, C.R., Dolnikoff, M.S., Abdalla Saad, M.J., Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats (2003) Life Sci, 73 (11), pp. 1369-1381. , 10.1016/S0024-3205(03)00477-6, 12850498Delibegovic, M., Zimmer, D., Kauffman, C., Rak, K., Hong, E.G., Cho, Y.R., Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates dietinduced endoplasmic reticulum stress (2009) Diabetes, 58 (3), pp. 590-599. , 2646057, 19074988Bence, K.K., Hepatic PTP1B Deficiency: The Promise of a Treatment for Metabolic Syndrome? (2010) J Clin Metab Diabetes., 1 (1), pp. 27-33. , 3083115, 21533018Perseghin, G., Price, T.B., Petersen, K.F., Roden, M., Cline, G.W., Gerow, K., Rothman, D.L., Shulman, G.I., Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects (1996) N Engl J Med, 335, pp. 1357-1362. , 10.1056/NEJM199610313351804, 8857019Houmard, J.A., Shaw, C.D., Hickey, M.S., Tanner, C.J., Effect of short-term exercise training on insulin-stimulated PI 3-kinase activity in human skeletal muscle (1999) Am J Physiol, 277, pp. E1055-E1060O'Gorman, D.J., Karlsson, H.K., McQuaid, S., Yousif, O., Rahman, Y., Gasparro, D., Glund, S., Nolan, J.J., Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes (2006) Diabetologia, 49, pp. 2983-2992. , 10.1007/s00125-006-0457-3, 17019595Luciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Saad, M.J., Velloso, L.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147 (1), pp. 149-157. , 10.1530/eje.0.1470149, 12088932Jorge, M.L., de Oliveira, V.N., Resende, N.M., Paraiso, L.F., Calixto, A., Diniz, A.L., Resende, E.S., Geloneze, B., The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus (2011) Metabolism, 60 (9), pp. 1244-1252. , 10.1016/j.metabol.2011.01.006, 21377179Heled, Y., Shapiro, Y., Shani, Y., Moran, D.S., Langzam, L., Barash, V., Sampson, S.R., Meyerovitch, J., Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus (2004) Metabolism, 53 (7), pp. 836-841. , 10.1016/j.metabol.2004.02.001, 15254873Oliveira, A.G., Carvalho, B.M., Tobar, N., Ropelle, E.R., Pauli, J.R., Bagarolli, R.A., Guadagnini, D., Saad, M.J., Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats (2011) Diabetes, 60 (3), pp. 784-796. , 10.2337/db09-1907, 3046839, 21282367Ropelle, E.R., Flores, M.B., Cintra, D.E., Rocha, G.Z., Pauli, J.R., Morari, J., de Souza, C.T., Carvalheira, J.B., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol, 24. , 8(8)Pauli, J.R., Ropelle, E.R., Cintra, D.E., De Souza, C.T., da Silva, A.S., Moraes, J.C., Prada, P.O., Saad, M.J., Acute exercise reverses aged-induced impairments in insulin signaling in rodent skeletal muscle (2010) Mech Ageing Dev, 131 (5), pp. 323-329. , 10.1016/j.mad.2010.03.004, 20307567Mohammad, A., Wang, J., McNeill, J.H., Bis(maltolato)oxovanadium(IV) inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo (2002) Mol Cell Biochem, 229 (1-2), pp. 125-128Delibegovic, M., Zimmer, D., Kauffman, C., Rak, K., Hong, E.G., Cho, Y.R., Kim, J.K., Bence, K.K., Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress (2009) Diabetes, 58 (3), pp. 590-599. , 2646057, 19074988Carvalho, C.R., Brenelli, S.L., Silva, A.C., Nunes, A.L., Velloso, L.A., Saad, M.J., Effect of aging on insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of rats (1996) Endocrinology, 137 (1), pp. 151-159. , 10.1210/en.137.1.151, 8536607Ropelle, E.R., Pauli, J.R., Cintra, D.E., da Silva, A.S., De Souza, C.T., Guadagnini, D., Carvalho, B.M., Carvalheira, J.B., Targeted Disruption of Inducible Nitric Oxide Synthase Protects Against Aging, S-Nitrosation, and Insulin Resistance in Muscle of Male Mice (2012) DiabetesShimokota, H., Muller, D.C., Fleg, J.L., Sorkin, J., Ziemba, A.J., Andres, R., Age as independent determinant of glucose tolerance (1991) Diabetes, 40, pp. 44-51. , 10.2337/diabetes.40.1.44, 1748265Rimbert, V., Boirie, Y., Bedu, M., Hocquette, J.F., Ritz, P., Morio, B., Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity (2004) FASEB J, 18, pp. 737-739Amati, F., Dube, J.J., Coen, P.M., Stefanovic-Racic, M., Toledo, F.G., Goodpaster, B.H., Physical inactivity and obesity underlie the insulin resistance of aging (2009) Diabetes Care, 32, pp. 1547-2154. , 10.2337/dc09-0267, 2713647, 19401446Boden, G., Chen, X., DeSantis, R.A., Kendrick, Z., Effects of age and body fat on insulin resistance in healthy men (1993) Diabetes Care, 16 (5), pp. 728-733. , 10.2337/diacare.16.5.728, 8495612Barnard, R.J., Lawani, L.O., Martin, D.A., Youngren, J.F., Singh, R., Scheck, S.H., Effects of maturation and aging on the skeletal muscle glucose transport system (1992) Am J Physiol, 262, pp. E619-E626Rocha, E.M., Carvalho, C.R., Saad, M.J., Velloso, L.A., The influence of ageing on the insulin signalling system in rat lacrimal and salivary glands (2003) Acta Ophthalmol Scand, 81 (6), pp. 639-645. , 10.1111/j.1395-3907.2003.00162.x, 14641268Asante-Appiah, E., Kennedy, B.P., Protein tyrosine phosphatases: the quest for negative regulators of insulin action (2003) Am J Physiol Endocrinol Metab, 284, pp. E663-E670Seely, B.L., Staubs, P.A., Reichart, D.R., Berhanu, P., Milarski, K.L., Saltiel, A.R., Kusari, J., Olefsky, J.M., Protein tyrosine phosphatase 1B interacts with the activated insulin receptor (1996) Diabetes, 45, pp. 1379-1385. , 10.2337/diabetes.45.10.1379, 8826975Zinker, B.A., Rondinone, C.M., Trevillyan, J.M., Gum, R.J., Clampit, J.E., Waring, J.F., Xie, N., Jirousek, M.R., PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice (2002) Proc Natl Acad Sci U S A, 99 (17), pp. 11357-11362. , 10.1073/pnas.142298199, 123261, 12169659Hoene, M., Lehmann, R., Hennige, A.M., Pohl, A.K., HĂ€ring, H.U., Schleicher, E.D., Weigert, C., Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise (2009) J Physiol, 587, pp. 241-252. , 10.1113/jphysiol.2008.160275, 2670037, 19001047Michael, M.D., Kulkarni, R.N., Postic, C., Previs, S.F., Shulman, G.I., Magnuson, M.A., Kanh, C.R., Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction (2000) Mol Cell, 6, pp. 87-97Sun, C., Zhang, F., Ge, X., Yan, T., Chen, X., Shi, X., Zhai, Q., SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B (2007) Cell Metab, 6 (4), pp. 307-319. , 10.1016/j.cmet.2007.08.014, 17908559Suwaa, M., Nakanob, H., Radakc, Z., Kumagai, S., Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor g coactivator-1alpha protein expressions in rat skeletal muscle (2008) Metabolism, 57, pp. 986-998. , 10.1016/j.metabol.2008.02.017, 18555842Dumke, C.L., Mark Davis, J., Angela Murphy, E., Nieman, D.C., Carmichael, M.D., Quindry, J.C., Travis Triplett, N., McAnulty, L.S., Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis (2009) Eur J Appl Physiol, 107 (4), pp. 419-427. , 10.1007/s00421-009-1143-1, 19657668Zabolotny, J.M., Kim, Y.B., Welsh, L.A., Kershaw, E.E., Neel, B.G., Kahn, B.B., Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo (2008) J Biol Chem, 283 (21), pp. 14230-14241. , 10.1074/jbc.M800061200, 2386946, 18281274Ropelle, E.R., Pauli, J.R., Prada, P.O., de Souza, C.T., Picardi, P.K., Faria, M.C., Cintra, D.E., Carvalheira, J.B., Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation (2006) J Physiol, 577 (PART 3), pp. 997-1007. , 1890392, 17008371Da Silva, A.S., Pauli, J.R., Ropelle, E.R., Oliveira, A.G., Cintra, D.E., De Souza, C.T., Velloso, L.A., Saad, M.J., Exercise intensity, inflammatory signaling, and insulin resistance in obese rats (2010) Med Sci Sports Exerc, 42 (12), pp. 2180-2188. , 10.1249/MSS.0b013e3181e45d08, 20473230Bonora, E., Moghetti, P., Zancanaro, C., Cigolini, M., Querena, M., Cacciatori, V., Corgnati, A., Muggeo, M., Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies (1989) J Clin Endocrinol Metab, 68, pp. 374-378. , 10.1210/jcem-68-2-374, 2645308Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , 10.1016/0003-2697(76)90527-3, 942051Saad, M.J., Maeda, L., Brenelli, S.L., Carvalho, C.R., Paiva, R.S., Velloso, L.A., Defects in insulin signal transduction in liver and muscle of pregnant rats (1997) Diabetologia, 40, pp. 179-186. , 10.1007/s001250050660, 904947