5 research outputs found

    Data - Redox mediators for enhanced azo dye degradation (International Journal of Hydrogen Energy)

    No full text
    Data for the figures of the manuscript accepted by the International Journal of Hydrogen Energy on effect of redox mediator for cathode electron transfer to enhance azo dye degradation

    Modeling and upscaling analysis of gas diffusion electrode-based electrochemical carbon dioxide reduction systems

    No full text
    As an emerging technology for CO2 utilization, electrochemical CO2 reduction reaction (ECO2RR) systems incorporating gas diffusion electrodes (GDE) have the potential to transform CO2 to valuable products efficiently and environment-friendly. In this work, a two-dimensional multiphase model capturing the details of the catalyst layer in a GDE that produces formate with byproducts is established and quantitatively validated against experimental data. This model is capable of describing the mixture gas and aqueous species transportation, electron conduction processes, and a series of interrelated chemical and electrochemical reactions. Specific electrical energy consumption (SEEC) and product yield (PY) have been introduced and used to examine the GDE scalability and evaluate the system performance. The results predict the optimal values for applied cathode potential and catalyst loading and porosity. The effect of inlet gas composition and velocity is also evaluated. Moreover, this study predicts that the GDE is scalable as it retains a stable performance as its geometrical surface area varies. This model together with the simulation findings contributes to the improved understanding of GDE-based CO2 conversion as needed for the future development toward successful industrial applications

    Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO<sub>2</sub> conversion during microbial electrosynthesis

    No full text
    Microbial electrosynthesis (MES) is a promising technology to convert CO2 into value-added chemicals. Enhancing the interactions between biofilms and electrodes is the key of bioelectrochemical systems (BES). In this work, we studied the conversion of CO2 by MES in reactors equipped with novel gas diffusion electrodes (GDEs) modified with a polyaniline (PANI) polymer binary doped with H2SO4 and ammonium lauryl sulfate. The enhanced conductive and hydrophilic properties of the polymer increased the biocompatibility of the PANI-modified GDEs compared to the non-modified carbon GDEs. This increased biocompatibility resulted in faster start-up and higher bioproduction of volatile fatty acids (VFAs) such as acetate and butyrate. Up to 4400 ppm acetate was produced in PANI-modified reactors after 24 days of operation, compared to 408 ppm in reactors equipped with non-modified GDEs. A maximum acetate concentration of 7500 ppm (production rate of 554.8 ± 267.5 ppm day−1) was reached in reactors equipped with PANI-GDEs. After 60 days, apart from acetate, 245 ppm butyrate was produced in reactors equipped with the electrodes modified with PANI, while less than 60 ppm was produced with non-modified GDEs. SEM analysis revealed the development of biofilms on both modified and non-modified electrodes, but the images also suggest differences in compositions

    How to go beyond C<sub>1</sub> products with electrochemical reduction of CO<sub>2</sub>

    No full text
    The electrochemical reduction of CO2to produce fuels and value-added organic chemicals is of great potential, providing a mechanism to convert and store renewable energy within a carbon-neutral energy circle. Currently the majority of studies report C1products such as carbon monoxide and formate as the major CO2reduction products. A particularly challenging goal within CO2electrochemical reduction is the pursuit of multi-carbon (C2+) products which have been proposed to enable a more economically viable value chain. This review summaries recent development across electro-, photoelectro- and bioelectro-catalyst developments. It also explores the role of device design and operating conditions in enabling C-C bond generation
    corecore