36 research outputs found

    Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters

    Get PDF
    We performed an unbiased structure search for low-lying energetic minima of neutral and charged palladium Pd(n)(Q) (n = 2–20, Q = 0, + 1 and –1) clusters using CALYPSO method in combination with density functional theory (DFT) calculations. The main candidates for the lowest energy neutral, cationic and anionic clusters are identified, and several new candidate structures for the cationic and anionic ground states are obtained. It is found that the ground state structures of small palladium clusters are more sensitive to the charge states. For the medium size Pd(n)(0/+/–) (n = 16–20) clusters, a fcc-like growth behavior is found. The structural transition from bilayer-like structures to cage-like structures is likely to occur at n = 14 for the neutral and cationic clusters. In contrast, for the anionic counterparts, the structural transition occurs at Pd(13)(–). The photoelectron spectra (PES) of palladium clusters are simulated based on the time-dependent density functional theory (TD-DFT) method and compared with the experimental data. The good agreement between the experimental PES and simulated spectra provides us unequivocal structural information to fully solve the global minimum structures, allowing for new molecular insights into the chemical interactions in the Pd cages

    Aromatic Borozene

    Get PDF
    Based on our comprehensive theoretical investigation and known experimental results for small boron clusters, we predict the existence of a novel aromatic inorganic molecule, B12H6. This molecule, which we refer to as borozene, has remarkably similar properties to the well-known benzene. Borozene is planar, possesses a large first excitation energy, D3h symmetry, and more importantly is aromatic. Furthermore, the calculated anisotropy of the magnetic susceptibility of borozene is three times larger in absolute value than for benzene. Finally, we can show that borozene molecules may be fused together to give larger aromatic compounds with even larger anisotropic susceptibilities.Comment: 4 pages, 4 figures and 1 tabl
    corecore