30 research outputs found

    Zn(II) mediates vancomycin polymerization and potentiates its antibiotic activity against resistant bacteria

    Get PDF
    Vancomycin is known to bind to Zn(II) and can induce a zinc starvation response in bacteria. Here we identify a novel polymerization of vancomycin dimers by structural analysis of vancomycin-Zn(II) crystals and fibre X-ray diffraction. Bioassays indicate that this structure is associated with an increased antibiotic activity against bacterial strains possessing high level vancomycin resistance mediated by the reprogramming of peptidoglycan biosynthesis to use precursors terminating in D-Ala-D-Lac in place of D-Ala-D-Ala. Polymerization occurs via interaction of Zn(II) with the N-terminal methylleucine group of vancomycin, and we show that the activity of other glycopeptide antibiotics with this feature can also be similarly augmented by Zn(II). Construction and analysis of a model strain predominantly using D-Ala-D-Lac precursors for peptidoglycan biosynthesis during normal growth supports the hypothesis that Zn(II) mediated vancomycin polymerization enhances the binding affinity towards these precursors.This work was supported by funding from the Royal Society, UK (516002.K5877/ROG) and the Medical Research Council, UK (G0700141). A.Z. was supported from the Said foundation, the Cambridge Trust and the Cambridge Philosophical Society

    Crystal structures of NK1 heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists and the MET receptor

    No full text
    NK1 is a splice variant of the polypeptide growth factor HGF/SF, which consists of the N-terminal (N) and first kringle (K) domain and requires heparan sulfate or soluble heparin for activity. We describe two X-ray crystal structures of NK1–heparin complexes that define a heparin-binding site in the N domain, in which a major role is played by R73, with further contributions from main chain atoms of T61, K63 and G79 and the side chains of K60, T61, R76, K62 and K58. Mutagenesis experiments demonstrate that heparin binding to this site is essential for dimerization in solution and biological activity of NK1. Heparin also comes into contact with a patch of positively charged residues (K132, R134, K170 and R181) in the K domain. Mutation of these residues yields NK1 variants with increased biological activity. Thus, we uncover a complex role for heparan sulfate in which binding to the primary site in the N domain is essential for biological activity whereas binding to the K domain reduces activity. We exploit the interaction between heparin and the K domain site in order to engineer NK1 as a potent receptor agonist and suggest that dual (positive and negative) control may be a general mechanism of heparan sulfate-dependent regulation of growth factor activity

    Nanostructured films from hierarchical self-assembly of amyloidogenic proteins.

    No full text
    In nature, sophisticated functional materials are created through hierarchical self-assembly of simple nanoscale motifs. In the laboratory, much progress has been made in the controlled assembly of molecules into one-, two- and three-dimensional artificial nanostructures, but bridging from the nanoscale to the macroscale to create useful macroscopic materials remains a challenge. Here we show a scalable self-assembly approach to making free-standing films from amyloid protein fibrils. The films were well ordered and highly rigid, with a Young's modulus of up to 5-7 GPa, which is comparable to the highest values for proteinaceous materials found in nature. We show that the self-organizing protein scaffolds can align otherwise unstructured components (such as fluorophores) within the macroscopic films. Multiscale self-assembly that relies on highly specific biomolecular interactions is an attractive path for realizing new multifunctional materials built from the bottom up
    corecore