25 research outputs found

    Preparation and thermal conductivity of CuO nanofluid via a wet chemical method

    Get PDF
    In this article, a wet chemical method was developed to prepare stable CuO nanofluids. The influences of synthesis parameters, such as kinds and amounts of copper salts, reaction time, were studied. The thermal conductivities of CuO nanofluids were also investigated. The results showed that different copper salts resulted in different particle morphology. The concentration of copper acetate and reaction time affected the size and shape of clusters of primary nanoparticles. Nanofluids with different microstructures could be obtained by changing the synthesis parameters. The thermal conductivities of CuO nanofluids increased with the increase of particle loading

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration

    Apoptosis, autophagy, necroptosis, and cancer metastasis

    Get PDF

    Recycling and reusing method of cement concrete waste

    No full text
    Inventor name used in this publication: 潘智生Inventor name used in this publication: 占宝剑Inventor name used in this publication: 玄东兴Title in Traditional Chinese: 一種水泥混凝土廢棄物的回收再利用方法China202212 bcchVersion of Recor

    Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method

    No full text
    202202 bchyVersion of RecordOthersThis work was supported by CIC (Construction Industry Council) of Hong Kong.Publishe

    Mixture optimization of cement treated demolition waste with recycled masonry and concrete

    Get PDF
    Due to environmental reasons and the shortage of natural resources, it is greatly valuable to recycle construction and demolition waste (CDW) as much as possible. One of effective ways to reuse more CDW is to produce a cemented road base material. The recycled CDW however is a mix of recycled masonry and concrete with a wide variation in composition. This implies that the mechanical properties of cement treated demolition waste are not only determined by cement content and degree of compaction, but also by the ratio of crushed masonry content to crushed concrete content. In order to optimize its mixture proportioning, this paper explores the response surface and contour plot of the combined effect of mixture variables on the mechanical properties including the unconfined compressive strength (UCS), the elastic modulus (E) and their ratio. It has been recognized that optimizing the mixture proportioning of cement treated demolition waste should not only consider its material properties, but also needs to take into account its structural behavior as a pavement layer. Analytical results indicate that increasing the degree of compaction is an economic technique to obtain the required strength, but it is not an efficient method to enhance the admissible elastic strain (the ratio of UCS to E) and to improve the flexural rigidity of the road base layer. Obtaining a desired low flexural rigidity certainly needs adjusting of the masonry content and the cement content.Structural EngineeringCivil Engineering and Geoscience
    corecore