12 research outputs found

    Cerebrospinal fluid levels of opioid peptides in fibromyalgia and chronic low back pain

    Get PDF
    BACKGROUND: The mechanism(s) of nociceptive dysfunction and potential roles of opioid neurotransmitters are unresolved in the chronic pain syndromes of fibromyalgia and chronic low back pain. METHODS: History and physical examinations, tender point examinations, and questionnaires were used to identify 14 fibromyalgia, 10 chronic low back pain and 6 normal control subjects. Lumbar punctures were performed. Met-enkephalin-Arg(6)-Phe(7 )(MEAP) and nociceptin immunoreactive materials were measured in the cerebrospinal fluid by radioimmunoassays. RESULTS: Fibromyalgia (117.6 pg/ml; 85.9 to 149.4; mean, 95% C.I.; p = 0.009) and low back pain (92.3 pg/ml; 56.9 to 127.7; p = 0.049) groups had significantly higher MEAP than the normal control group (35.7 pg/ml; 15.0 to 56.5). MEAP was inversely correlated to systemic pain thresholds. Nociceptin was not different between groups. Systemic Complaints questionnaire responses were significantly ranked as fibromyalgia > back pain > normal. SF-36 domains demonstrated severe disability for the low back pain group, intermediate results in fibromyalgia, and high function in the normal group. CONCLUSIONS: Fibromyalgia was distinguished by higher cerebrospinal fluid MEAP, systemic complaints, and manual tender points; intermediate SF-36 scores; and lower pain thresholds compared to the low back pain and normal groups. MEAP and systemic pain thresholds were inversely correlated in low back pain subjects. Central nervous system opioid dysfunction may contribute to pain in fibromyalgia

    Melatonin: new places in therapy

    No full text
    The fact that the full extent of the function of the pineal gland has not yet been elucidated, has stimulated melatonin research worldwide. This review introduces melatonin's mechanism of action, direct and indirect antioxidant actions as well as the antioxidant properties of its metabolites, 6-hydroxymelatonin (6-OHM) and N-acetyl-N-formyl-5-methoxykynurenamine (AFMK). At present the mechanism of action is proposed to be receptor-, protein- and nonprotein-mediated. From its popular role in the treatment of jetlag, melatonin is now implicated in the reduction of oxidative stess, both as a free radical scavenger and antioxidant. Melatonin's direct scavenging action in respect of the following will be discussed: superoxide anions, hydrogen peroxide, hydroxyl radicals, singlet oxygen, peroxy radicals and nitric oxide/peroxy nitrite anions. In addition melatonin also possesses indirect antioxidant activity and the role of its metabolites, AFMK and 6-OHM will be presented. It is these free radical scavenging and antioxidant properties of melatonin that has shifted the focus from that of merely strengthening circadian rhythms to that of neuroprotectant: a new place in therapy

    Epidemiology of Alzheimer disease

    No full text

    Circulating Tumor Cells and Nucleic Acids for Tumor Diagnosis

    No full text
    corecore