1,063 research outputs found

    Cumulative exposure to air pollution and long term outcomes after first acute myocardial infarction: A population-based cohort study. Objectives and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease is a leading cause of morbidity and mortality worldwide and epidemiological studies have consistently shown an increased risk for cardiovascular events in relation to exposure to air pollution. The Israel Study of First Acute Myocardial Infarction was designed to longitudinally assess clinical outcomes, psychosocial adjustment and quality of life in patients hospitalized with myocardial infarction. The current study, by introducing retrospective air pollution data, will examine the association between exposure to air pollution and outcome in myocardial infarction survivors. This report will describe the methods implemented and measures employed. The study specifically aims to examine the relationship between residential exposure to air pollution and long-term risk of recurrent coronary event, heart failure, stroke, cardiac and all-cause death in a geographically defined cohort of patients with myocardial infarction.</p> <p>Methods/Design</p> <p>All 1521 patients aged ≤65 years, admitted with first myocardial infarction between February 1992 and February 1993 to the 8 hospitals serving the population of central Israel, were followed for a median of 13 years. Data were collected on sociodemographic, clinical and environmental factors. Data from air quality monitoring stations will be incorporated retrospectively. Daily measures of air pollution will be summarised, allowing detailed maps to be developed in order to reflect chronic exposure for each participant.</p> <p>Discussion</p> <p>This study addresses some of the gaps in understanding of the prognostic importance of air pollution exposure after myocardial infarction, by allowing a sufficient follow-up period, using a well-defined community cohort, adequately controlling for multiple and multilevel confounding factors and providing extensive data on various outcomes.</p

    Detection and quantification of fluconazole within Candida glabrata biofilms

    Get PDF
    Candida infections are often associated with biofilms and consequent high resistance to most common drugs (e.g. azoles). These resistance mechanisms are not only associated with the biofilm yeast physiology, but also with the presence of a diffusional barrier imposed by the biofilm matrix; however, the real biochemical role of the biofilm components remains very unclear. So, in order to further clarify this issue, we intend to determine, for the first time, fluconazole in biofilms within both supernatants and matrices. Candida biofilms were formed in the presence of fluconazole, and it was recovered from both supernatant and matrix cell-free fractions. Then, high-pressure liquid chromatography was used to identify and quantify the amount of drug that was present in the two fractions. Moreover, this study also showed that the presence of fluconazole in both fractions indicated that the drug administrated did not completely reach the cells, so this phenomena can easily be associated with lower biofilm susceptibility, since the drug administered did not completely reach the cells.This work was supported by the Programa Operacional, Fatores de competitividade-COMPETE and by national funds through FCT-Fundacao para a Ciencia e a Tecnologia on the scope of the projects FCT PTDC/SAU-MIC/119069/2010, RECI/EBB-EBI/0179/2012, PEst-OE/EQB/LA0023/2013 and Celia F. Rodrigue's SFRH/BD/93078/2013 PhD grant. The authors thank the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality,'' Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON. 2-O Novo Norte), QREN, FEDER. We also would like to acknowledge Pfizer (R), S.A., for the kindly donation of fluconazole

    Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition

    Get PDF
    Several cell-based therapies are under pre-clinical and clinical evaluation for the treatment of ischemic diseases. Poor survival and vascular engraftment rates of transplanted cells force them to work mainly via time-limited paracrine actions. Although several approaches, including the use of soluble vascular endothelial growth factor (sVEGF)-VEGF165, have been developed in the last 10 years to enhance cell survival, they showed limited efficacy. Here, we report a pro-survival approach based on VEGF-immobilized microparticles (VEGF-MPs). VEGF-MPs prolong VEGFR-2 and Akt phosphorylation in cord blood-derived late outgrowth endothelial progenitor cells (OEPCs). In vivo, OEPC aggregates containing VEGF-MPs show higher survival than those treated with sVEGF. Additionally, VEGF-MPs decrease miR-17 expression in OEPCs, thus increasing the expression of its target genes CDKN1A and ZNF652. The therapeutic effect of OEPCs is improved in vivo by inhibiting miR-17. Overall, our data show an experimental approach to improve therapeutic efficacy of proangiogenic cells for the treatment of ischemic diseases.Soluble vascular endothelial growth factor (VEGF) enhances vascular engraftment of transplanted cells but the efficacy is low. Here, the authors show that VEGF-immobilized microparticles prolong survival of endothelial progenitors in vitro and in vivo by downregulating miR17 and upregulating CDKN1A and ZNF652

    Tropical carbon sink accelerated by symbiotic dinitrogen fixation

    Get PDF
    A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change

    Agenesia e lipoma de corpo caloso: relato de caso

    Get PDF
    The agenesis and lipoma of the corpus callosum is a very rare association. We report the case of a 18-years old woman with rare epileptic seizures since the age of 6 years, normal neurological examination, as well as normal electroencephalogram. The brain computed tomography scanning and the magnetic resonance showed the lipoma and the agenesis of the corpus callosum.A agenesia e lipoma do corpo caloso é uma associação muito rara. Relatamos o caso de uma paciente de 18 anos com raras crises epilépticas desde os 6 anos de idade, exame neurológico normal, assim como eletrencefalograma normal. A tomografia computadorizada de crânio e a ressonância magnética mostraram o lipoma e a agenesia de corpo caloso.Escola Paulista de MedicinaUNIFESP, EPMSciEL

    Genes Associated with 2-Methylisoborneol Biosynthesis in Cyanobacteria: Isolation, Characterization, and Expression in Response to Light

    Get PDF
    The volatile microbial metabolite 2-methylisoborneol (2-MIB) is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater
    corecore