24 research outputs found

    The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13

    No full text
    The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over a series of Cu ion-exchanged (20-80%) SSZ-13 zeolite catalysts. High NO reduction efficiencies (80-95%) were obtained over all catalyst samples between 250 and 500 A degrees C, and at the gas hourly space velocity of 200,000 h(-1). Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (> 500 A degrees C) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be similar to 40-60% since higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600 A degrees C. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the "fast" SCR (i.e., NO/NO2 = 1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N-2 was observed; only a very small amount of N2O was produced even in the presence of NO2. The apparent activation energies for NO oxidation and NO SCR were estimated to be similar to 58 and similar to 41 kJ/mol, respectivelyclose575

    Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO(x) Catalysts

    No full text
    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu ion-exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-crystalline diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in situ spectroscopic studies.close2
    corecore