4 research outputs found

    Centrifuge model study on low permeable slope reinforced by hybrid geosynthetics

    No full text
    The objective of this paper is to study the performance of hybrid geosynthetic reinforced slopes, with permeable geosynthetic as one of its components, for low permeable backfill slopes subjected to seepage. Four centrifuge tests have been performed to study the behavior of hybrid geosynthetic reinforced slopes subjected to seepage, keeping the model slope height and vertical spacing of geosynthetic reinforcement layers constant. Centrifuge model tests were performed on 2V:1H slopes at 30 gravities. One unreinforced, one model geogrid reinforced and two hybrid geosynthetic reinforced slope models with varying number of hybrid geosynthetic layers were tested. The effect of raising ground water table was simulated by using a seepage flow simulator during the flight. Surface movements and pore water pressure profiles for the slope models were monitored using displacement transducers and pore pressure transducers during centrifuge tests. Markers glued on to geosynthetic layers were digitized to arrive at displacement vectors at the onset of raising ground water table. Further, strain distribution along the geosynthetic reinforcement layers and reinforcement peak strain distribution have been determined using digital image analysis technique. The discharge for the performed model tests is determined by performing seepage analysis. It was confirmed by the centrifuge tests that the hybrid geosynthetics increases the stability of low permeable slope subjected to water table rise. The hybrid geosynthetic layers in the bottom half of the slope height play a major role in the dissipation of pore water pressure. (C) 2011 Elsevier Ltd. All rights reserved

    Evaluation of permeability characteristics of a geosynthetic-reinforced soil through laboratory tests

    No full text
    The objective of this paper is to examine the permeability characteristics of geosynthetic layers under confinement with soils having relatively low permeability. For this purpose, a large permeameter was custom designed and a series of permeability tests were carried-out by varying soil type and number of geosynthetic layers. Further, effect of provision of sand cushion and the thickness of sand cushion on permeability characteristics was also examined. Normal stress was increased in intervals of 50 kPa up to 200 kPa. With an increase in normal stress, a decrease in the permeability characteristics of a geosynthetic-reinforced soil was observed. The permeability characteristics were found to improve significantly with the provision of sand cushion and an increase in its thickness. Based on the definition of equivalent coefficient of permeability of stratified soils for parallel flow, an equation for estimating coefficient of permeability of soil-geosynthetic system with and without sand cushion is proposed. Considering the application of geosynthetics in reinforced slopes and walls with low-permeable backfill soils, a suitable geosynthetic with a thin layer of sand cushion is recommended. This in turn can also help in enhancing the pore-water pressure dissipation
    corecore