8 research outputs found

    Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    No full text
    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg(-1); ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria-absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a Delta H-f similar to 75 kJ mol(-1)), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in < 30 min at 200 degrees C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.close12411

    Intermetallic Formation and Fluidity in Sn-Rich Sn-Cu-Ni Alloys

    Get PDF
    This paper investigates the phase equilibria and solidification behavior of Sn-Cu-Ni alloys with compositions in the range of 0 wt.% to 1.5 wt.% Cu and 0 wt.% to 0.3 wt.% Ni. The isothermal section at 268°C in the Sn-rich corner was determined. No evidence for a ternary phase was found, and the section is in good agreement with past experimental studies that report wide solubility ranges for (Cu,Ni) Sn and (Ni,Cu) Sn . The vacuum fluidity test was applied to compositions that are liquid at 268°C to map the variation in microstructure and flow behavior with composition in this system. Significant variations in fluidity length were measured among the Sn-Cu-Ni alloys, and the variations correlate with the microstructure that develops during solidification. The generated fluidity map enables the selection of Sn-Cu-Ni solder compositions that exhibit good fluidity behavior during solidification and form near-eutectic microstructures

    Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA

    No full text
    corecore