9 research outputs found

    Quantum Non-Demolition Detection of Strongly Correlated Systems

    Full text link
    Preparation, manipulation, and detection of strongly correlated states of quantum many body systems are among the most important goals and challenges of modern physics. Ultracold atoms offer an unprecedented playground for realization of these goals. Here we show how strongly correlated states of ultracold atoms can be detected in a quantum non-demolition scheme, that is, in the fundamentally least destructive way permitted by quantum mechanics. In our method, spatially resolved components of atomic spins couple to quantum polarization degrees of freedom of light. In this way quantum correlations of matter are faithfully mapped on those of light; the latter can then be efficiently measured using homodyne detection. We illustrate the power of such spatially resolved quantum noise limited polarization measurement by applying it to detect various standard and "exotic" types of antiferromagnetic order in lattice systems and by indicating the feasibility of detection of superfluid order in Fermi liquids.Comment: Published versio

    Experimental long-lived entanglement of two macroscopic objects

    Get PDF
    Entanglement is considered to be one of the most profound features of quantum mechanics. An entangled state of a system consisting of two subsystems cannot be described as a product of the quantum states of the two subsystems. In this sense the entangled system is considered inseparable and nonlocal. It is generally believed that entanglement manifests itself mostly in systems consisting of a small number of microscopic particles. Here we demonstrate experimentally the entanglement of two objects, each consisting of about 10^12 atoms. Entanglement is generated via interaction of the two objects - more precisely, two gas samples of cesium atoms - with a pulse of light, which performs a non-local Bell measurement on collective spins of the samples. The entangled spin state can be maintained for 0.5 millisecond. Besides being of fundamental interest, the robust, long-lived entanglement of material objects demonstrated here is expected to be useful in quantum information processing, including teleportation of quantum states of matter and quantum memory.Comment: Submitted to Nature, June 9, 2001, 11 pages, 3 figures. Contents changed following referees' suggestion

    Raman shines back

    No full text
    Texte complet ici: http://rdcu.be/pGLTInternational audienceCoherent backscattering experiments indicate that spontaneous Raman scattering is a coherent process that can lead to macroscopically observable interference phenomena in disordered solid-state samples

    Lithium-silicon alloys: Phase diagram, electrochemical studies, thermodynamic properties, application in chemical power cells

    No full text
    corecore