1,566 research outputs found

    Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)

    Get PDF
    Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM) fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models, which are GUTs with gravity mediated supersymmetry breaking and higher dimensional operators. Introducing non-renormalizable terms in the super- and K\"ahler potentials, we can obtain the correct SM fermion mass relations in the SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations, and in the SO(10) model. In the latter case the gauge symmetry is broken down to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate the realistic SM fermion mass relation in GUTs by considering the high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde

    Quantum theory's last challenge

    Get PDF
    Quantum mechanics is now 100 years old and still going strong. Combining general relativity with quantum mechanics is the last hurdle to be overcome in the "quantum revolution".Comment: (9 pages, LaTex) This is the preprint version of an article that appeared in the issue 6813 (volume 408) of Nature, as part of a 3-article celebration of the 100th anniversary of Planck's solution of the black-body-radiation proble

    An interferometric gravitational wave detector as a quantum-gravity apparatus

    Full text link
    As a consequence of the extreme precision of the measurements it performs, an interferometric gravitational wave detector is a macroscopic apparatus for which quantum effects are not negligible. I observe that this property can be exploited to probe some aspects of the interplay between Quantum Mechanics and Gravity.Comment: LaTex, 7 pages. Version accepted for publication in Nature. Under press embargo until publicatio

    A phenomenological description of quantum-gravity-induced space-time noise

    Get PDF
    I propose a phenomenological description of space-time foam and discuss the experimental limits that are within reach of forthcoming experiments.Comment: 10 pages, LaTex, 1 figure. Short paper, omitting most technical details. More detailed analysis was reported in gr-qc/010400

    The gravitino coupling to broken gauge theories applied to the MSSM

    Full text link
    We consider gravitino couplings in theories with broken gauge symmetries. In particular, we compute the single gravitino production cross section in W+ W- fusion processes. Despite recent claims to the contrary, we show that this process is always subdominant to gluon fusion processes in the high energy limit. The full calculation is performed numerically; however, we give analytic expressions for the cross section in the supersymmetric and electroweak limits. We also confirm these results with the use of the effective theory of goldstino interactions.Comment: 26 pages, 4 figure

    Spectrum Generating Conformal and Quasiconformal U-Duality Groups, Supergravity and Spherical Vectors

    Full text link
    After reviewing the algebraic structures that underlie the geometries of N=2 Maxwell-Einstein supergravity theories (MESGT) in five and four dimensions with symmetric scalar manifolds, we give a unified realization of their three dimensional U-duality groups as spectrum generating quasiconformal groups. They are F_{4(4)}, E_{6(2)}, E_{7(-5)}, E_{8(-24)} and SO(n+2,4). Our formulation is covariant with respect to U-duality symmetry groups of corresponding five dimensional supergravity theories, which are SL(3,R), SL(3,C), SU*(6), E_{6(6)} and SO(n-1,1)X SO(1,1), respectively. We determine the spherical vectors of quasiconformal realizations of all these groups twisted by a unitary character. We also give their quadratic Casimir operators and determine their values. Our work lays the algebraic groundwork for constructing the unitary representations of these groups induced by their geometric quasiconformal actions, which include the quaternionic discrete series. For rank 2 cases, SU(2,1) and G_{2(2)}, corresponding to simple N=2 supergravity in four and five dimensions, this program was carried out in arXiv:0707.1669. We also discuss the corresponding algebraic structures underlying symmetries of matter coupled N=4 and N>4 supergravity theories. They lead to quasiconformal realizations of split real forms of U-duality groups as a straightforward extension of the quaternionic real forms.Comment: Section 4 is split with the addition of a subsection on quadratic Casimir operators; references added; typos corrected. Latex file; 53 page

    The Prospective Role of Cognitive Appraisals and Social Support in Predicting Children's Posttraumatic Stress.

    Get PDF
    Although both social support and cognitive appraisals are strong predictors of children's posttraumatic adjustment, understanding of the interplay between these factors is limited. We assessed whether cognitive appraisals mediated the relationship between social support and symptom development, as predicted by cognitive models of posttraumatic stress disorder (PTSD). Ninety seven children (Mean age = 12.08 years) were assessed at one month and six months following a single incident trauma. We administered self-report measures of cognitive appraisals, social support, and a diagnostic interview for PTSD. Results indicated that cognitive appraisals at one month post-trauma mediated the relationship between social support at one month post-trauma, and PTSD severity at follow-up. Differences in this relationship were observed between child-reported social support and parent-rated ability to provide support. Firm evidence was provided for the application of cognitive models of PTSD to children

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore