1,006 research outputs found
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
The true reinforced random walk with bias
We consider a self-attracting random walk in dimension d=1, in presence of a
field of strength s, which biases the walker toward a target site. We focus on
the dynamic case (true reinforced random walk), where memory effects are
implemented at each time step, differently from the static case, where memory
effects are accounted for globally. We analyze in details the asymptotic
long-time behavior of the walker through the main statistical quantities (e.g.
distinct sites visited, end-to-end distance) and we discuss a possible mapping
between such dynamic self-attracting model and the trapping problem for a
simple random walk, in analogy with the static model. Moreover, we find that,
for any s>0, the random walk behavior switches to ballistic and that field
effects always prevail on memory effects without any singularity, already in
d=1; this is in contrast with the behavior observed in the static model.Comment: to appear on New J. Phy
Mariner Mars 1971 optical navigation demonstration
The feasibility of using a combination of spacecraft-based optical data and earth-based Doppler data to perform near-real-time approach navigation was demonstrated by the Mariner Mars 71 Project. The important findings, conclusions, and recommendations are documented. A summary along with publications and papers giving additional details on the objectives of the demonstration are provided. Instrument calibration and performance as well as navigation and science results are reported
Scaling of interfaces in brittle fracture and perfect plasticity
The roughness properties of two-dimensional fracture surfaces as created by
the slow failure of random fuse networks are considered and compared to yield
surfaces of perfect plasticity with similar disorder. By studying systems up to
a linear size L=350 it is found that in the cases studied the fracture surfaces
exhibit self-affine scaling with a roughness exponent close to 2/3, which is
asymptotically exactly true for plasticity though finite-size effects are
evident for both. The overlap of yield or minimum energy and fracture surfaces
with exactly the same disorder configuration is shown to be a decreasing
function of the system size and to be of a rather large magnitude for all cases
studied. The typical ``overlap cluster'' length between pairs of such
interfaces converges to a constant with increasing.Comment: Accepted for publication in Phys. Rev.
Extremal statistics in the energetics of domain walls
We study at T=0 the minimum energy of a domain wall and its gap to the first
excited state concentrating on two-dimensional random-bond Ising magnets. The
average gap scales as , where , is the energy fluctuation exponent, length scale, and
the number of energy valleys. The logarithmic scaling is due to extremal
statistics, which is illustrated by mapping the problem into the
Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of
domain walls has also a logarithmic dependence on system size.Comment: Accepted for publication in Phys. Rev.
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks
{\it Critical slowing down} associated with the iterative solvers close to
the critical point often hinders large-scale numerical simulation of fracture
using discrete lattice networks. This paper presents a block circlant
preconditioner for iterative solvers for the simulation of progressive fracture
in disordered, quasi-brittle materials using large discrete lattice networks.
The average computational cost of the present alorithm per iteration is , where the stiffness matrix is partioned into
-by- blocks such that each block is an -by- matrix, and
represents the operational count associated with solving a block-diagonal
matrix with -by- dense matrix blocks. This algorithm using the block
circulant preconditioner is faster than the Fourier accelerated preconditioned
conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing
down} that is especially severe close to the critical point. Numerical results
using random resistor networks substantiate the efficiency of the present
algorithm.Comment: 16 pages including 2 figure
Temporally disordered Ising models
We present a study of the influence of different types of disorder on systems
in the Ising universality class by employing both a dynamical field theory
approach and extensive Monte Carlo simulations. We reproduce some well known
results for the case of quenched disorder (random temperature and random
field), and analyze the effect of four different types of time-dependent
disorder scarcely studied so far in the literature. Some of them are of obvious
experimental and theoretical relevance (as for example, globally fluctuating
temperatures or random fields). All the predictions coming from our field
theoretical analysis are fully confirmed by extensive simulations in two and
three dimensions, and novel qualitatively different, non-Ising transitions are
reported. Possible experimental setups designed to explore the described
phenomenologies are also briefly discussed.Comment: Submitted to Phys. Rev. E. Rapid Comm. 4 page
Stressed backbone and elasticity of random central-force systems
We use a new algorithm to find the stress-carrying backbone of ``generic''
site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be
made by randomly displacing the sites of a regular lattice. The percolation
threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16
+/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number
of ``critical bonds'' (if you remove them rigidity is lost) on the backbone
scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi
- …